SCS ENGINEERS, PC

TIER 2 NMOC EMISSION RATE REPORT FOR THE WHITE STREET LANDFILL GREENSBORO, NORTH CAROLINA

Presented by:

SCS ENGINEERS, PC 129 West Trade Street, Suite 1630 Charlotte, North Carolina 28202 (704) 377-4766

Prepared for:

CITY OF GREENSBORO

Environmental Services Department 2503 White Street P.O. Box 3136 Greensboro, NC 27402-3136 (336) 373-4107

> File No. 02203314.00 August 2, 2004

704 377-4766 FAX 704 377-4768 www.scsengineers.com

SCS ENGINEERS, PC

August 2, 2004 Project No. 02203314.00

Mr. Greg Tomasson City of Greensboro Environmental Services P.O. Box 3136 Greensboro, North Carolina 27402

Subject:

Tier 2 NMOC Emissions Report

White Street Landfill Greensboro, North Carolina

Dear Greg:

SCS Engineers, PC (SCS) is pleased to submit four copies of the Tier 2 non-methane organic compound (NMOC) report for the White Street Landfill. SCS personnel performed the Tier 2 field testing on June 15, 2004 in general accordance with the NCDENR-approved sampling protocol prepared on behalf of the City of Greensboro (City) by SCS. As shown in the report, the sampling and analysis indicate the NMOC emissions for the White Street Landfill exceed the 50 Mg/year threshold established by the New Source Performance Standards (NSPS). Our report concludes that the City has two options as a result of the NMOC emissions. These options are:

- 1. Conduct Tier 3 methane generation rate sampling and analysis as provided in 40 CFR 60.754(a)(4) in hopes of lowering the site-specific k constant; or,
- 2. Submit a Gas Collection and Control System Design Plan (GCCS Design Plan) within one year of the emissions exceedance date in accordance with 40 CFR 60.752(b)(2)(i). As we understand it, the due date of the GCCS Design Plan is May 18, 2005.

Based on SCS's experience, Tier 3 testing can be a costly process that often does not produce the desired results (i.e., significantly lowering the site's NMOC concentration). For these reasons, SCS does not recommend a Tier 3 test for the White Street Landfill.

As discussed, SCS plans to meet with the City next week to discuss this report and future NSPS-related activities. We will contact you in a few days to arrange the meeting. In the meantime, if you have any questions regarding this report, please do not hesitate to contact either Erin Conklin at 478-284-9392, or Steve Lamb at 704-377-4766.

Sincerely,

Erin C. Conklin Staff Engineer

SCS ENGINEERS, PC

Steven C. Lamb, P.E.

Office Manager

SCS ENGINEERS, PC

Attachment

E:\PROJECT FILES\02203314.00 White St LF\Tier2\Report\report trans-ltr.doc

TABLE OF CONTENTS

Section	<u>Page</u>
CERT	TIFICATION STATEMENTii
INTR	ODUCTION1
SITE	BACKGROUND1
TIER	2 NMOC SAMPLING2
	Field Sampling Procedures
TIER	2 NMOC LABORATORY ANALYSIS AND EMISSIONS ESTIMATE3
	Tier 2 Laboratory Analytical Results
CON	CLUSIONS AND RECOMMENDATIONS6
<u>Exhib</u>	<u>Page</u>
1 2	NMOC Laboratory Summary 4 NMOC Emissions Estimate 5
Appe	ndices
A B	SCS Sampling Protocol and Significant Correspondence NCDENR Sampling Protocol Approval Letter
C	Site Map and Tier 2 Sampling Locations
D	Tier 2 Sampling Logs and AtmAA Chain of Custody Forms
E	AtmAA Laboratory Report
F	LAEEM Tier 2 Model Outputs

E\PROJECT FILES\02203314.00 White St LF\Tier2\Report\GreensboroTier2report.doc

CERTIFICATION STATEMENT

This Tier 2 NMOC Emissions Rate Report has been prepared for the White Street Landfill by SCS Engineers, PC on behalf of the City of Greensboro. This report was prepared for compliance with the New Source Performance Standards (NSPS) 40 CFR 60, Subpart WWW – Standards of Performance for Municipal Solid Waste Landfills – in accordance with the NSPS.

Final Report Prepared By:		
Steven C. Lamb - Project D	livectur	
Print Name and Title		
Signature	8-2-2004 Date	
facility was operating at normal condition	certifies that to best of their knowledge, the ons during the site-specific (Tier 2) test and the eport is an accurate representation of their facilions.	
Responsible Facility Representative:		
Print Name and Title		
C'amatana	D.A.	
Signature	Date	

INTRODUCTION

On March 12,1996, the Environmental Protection Agency (EPA) promulgated the New Source Performance Standards (NSPS) and Emissions Guidelines (EG) for new and existing landfills under Section III (b) of the Clean Air Act (CAA). The basis for this legislation is EPA's determination that municipal solid waste (MSW) landfills contribute significant amounts of air pollution that is potentially detrimental to public health. The NSPS are intended to control non-methane organic compound (NMOC) and methanogenic emissions from MSW landfills. NMOCs include volatile organic compounds (VOCs), hazardous air pollutants (HAPs), and odorous compounds. The NSPS applies to landfills having a design capacity greater than 2.5 million Megagrams (Mg) (2.75 million tons), that were permitted, modified, or reconstructed after May 30, 1991.

The City of Greensboro (City) owns and operates the White Street Landfill (Landfill). The Landfill is regulated under the NSPS based upon both a design capacity exceeding 2.5 million Mg and a Tier 1 NMOC emission rate calculation which demonstrated an annual NMOC emission rate exceeding 50 Mg (55 tons) per year. Section 60.757(c)(1) states that if the Tier 1 analysis results in NMOC emissions greater than 50 Mg per year, a revised NMOC Emission Rate Report can be submitted using data gathered from a site-specific, Tier 2 analysis.

In April 1999, Tier 2 testing was conducted by SCS Engineers, PC (SCS) at the Landfill. Results of the April 1999 Tier 2 indicated NMOC emissions through April 2004 to be less than 50 Mg/year, so the Landfill was not required to install an NSPS-compliant gas collection and control system (GCCS). Since Tier 2 results are only valid for five years, the City retained SCS to conduct a new Tier 2 NMOC emissions test in 2004. This report summarizes the results of the new Tier 2 analysis.

This Tier 2 report was prepared by SCS on behalf of the City to quantify the NMOC emissions for compliance with the NSPS (40 CFR Part 60, Subpart WWW) by presenting Tier 2 sampling, analysis, and a revised NMOC emissions estimate. This report includes sections describing the field sampling procedures and activities, the results of the laboratory analysis, estimates of current and projected annual NMOC emissions, and overall conclusions.

SITE BACKGROUND

The Landfill (Solid Waste Permit No. 41-03) encompasses an area of approximately 767 acres within the city limits in the northeast quadrant of the City, at the east end of White Street. The Landfill is used for the disposal of MSW generated within the City and Guilford County. Beginning in 1943, waste disposal at the Landfill consisted primarily of incineration. Burning operations ceased in 1965, and since that time refuse has been buried on site.

White Street Landfill consists of several distinct municipal solid waste (MSW) landfill areas, which for the purpose of this compliance issue, are grouped into three phases: Phase I, Phase II and Phase III. Phase I is the oldest of the three areas. It is approximately 65 acres in size and contains land clearing and inert debris (LCID) deposited on top of MSW. This phase was filled with MSW between the years 1965 and 1978 and contains approximately 3.0 million tons of MSW. The City began disposing of LCID on top of the MSW in 1999 and is currently continuing this activity. Phase I does not have a landfill gas (LFG) collection system.

Phase II is an unlined, 145-acre area that received approximately 5.4 million tons of MSW from 1978 to 1997. A comprehensive active LFG extraction system is installed and operated by Duke Engineering and Services (DES) in this phase. LFG from Phase II is collected and either conveyed to Cone Mills via a transmission pipeline, or flared at the Phase II blower/flare station.

Phase III, a subtitle-D lined, 52-acre area, began receiving waste in 1997. Phase III consists of three cells. Cell 1 is approximately 25 acres in size and contains eight horizontal collectors that convey LFG to a passive flare. Cell 2 is approximately 15 acres in size and is the current active portion of the Landfill. Cell 2 contains seven horizontal LFG collectors that are not connected to a flare at this time. However, in the next several months, the City will be connecting the collectors from Cells 1 and 2 to a new blower/flare station located just east of Phase III. Cell 3 is approximately 12 acres in size and filling has not yet begun in this area.

TIER 2 NMOC SAMPLING

SCS performed site-specific Tier 2 NMOC field sampling for the White Street Landfill on June 15, 2004, in accordance with procedures outlined in the NSPS and SCS's sampling protocol. A copy of the Tier 2 sampling protocol prepared by SCS is provided in Appendix A. In addition, the North Carolina Department of the Environment and Natural Resources (NCDENR) approved the methodology of the sampling protocol prior to the field sampling. The approval letter from NCDENR is included in Appendix B.

Field Sampling Procedures

In the Tier 2 sampling protocol, SCS requested that the EPA and NCDENR consider a minor modification for the Tier 2 sampling program at the White Street Landfill. Subpart WWW, section 60.754 (a) (3) requires at least two LFG samples be collected per hectare (2.47 acres) of landfill surface that has retained waste for at least two years. Since the Landfill consists of three distinct phases, the sampling procedure for each phase is different. Refer to Appendix A for more information.

Tier 2 Field Sampling Activities

The Tier 2 NMOC field samples were collected at the Landfill on June 15, 2004. Present at the site during the sampling activities were representatives from the City and SCS. Prior to sampling, SCS personnel verified with Landfill personnel that the active LFG collection system in Phase II was operating normally and all applicable wells and collectors had applied vacuum at the time of the Tier 2 test. Pursuant to the above referenced sampling "procedure", the following samples were obtained:

- Three representative LFG samples were obtained from the main header upstream from the existing blower and condensate knockout in Phase II;
- Three representative LFG samples were obtained from the header upstream of the flame arrestor and passive flare in Phase III, Cell 1; and,
- Seven samples were obtained from the passive horizontal collectors in Phase III, Cell 2.

Although sampling LFG from Phase I was included in the sampling protocol, SCS did not obtain LFG samples from Phase I. Phase I sampling was postponed pending the results and our analysis of the Phase II and III samples.

The sampling locations are shown in Appendix C. Field equipment used during the sampling activities included a LandTec® GEM 500 Infrared Gas Analyzer, an EPA Method 25 C approved sampling train with an attached Cole-Palmer® digital pressure gauge, and nine 6-liter stainless steel SUMMA sample canisters. In accordance with EPA Method 25 C, the sampling apparatus was connected to the LFG sample port and purged using the GEM unit.

Once valid LFG readings were verified, approximately 3 liters of LFG were collected into each SUMMA canister at a maximum rate of 500 ml/min. An individual SUMMA canister was used for each of the six LFG header samples collected in Phase II and Phase III, Cell 1, and composite sampling into three SUMMA canisters was used in Phase III, Cell 2.

SCS shipped the LFG sample canisters to AtmAA, Inc. (AtmAA) in Calabasas, California, for subsequent analysis. Appendix D contains the Tier 2 sampling logs and AtmAA chain of custody forms.

TIER 2 NMOC LABORATORY ANALYSIS AND EMISSIONS ESTIMATE

Tier 2 Laboratory Analytical Results

A laboratory analysis of the LFG samples was performed by AtmAA using EPA Methods 25C and 3C. Measured NMOC concentrations from the SUMMA canisters were

corrected for moisture and nitrogen per standard procedures. SCS provided AtmAA with the field conditions (temperature and barometric pressure) at the time of LFG sampling to achieve an accurate calculation of the NMOC concentration.

Based on the laboratory results, the Landfill's average NMOC concentration for Phase II is **4,047** ppmv, for Phase III, Cell 1 is **7,842** ppmv and for Phase III, Cell 2 is **3,843** ppmv, all reported as carbon. Since the EPA Landfill Air Emissions Estimation Model (LAEEM) requires the input of the NMOC concentration in terms of hexane, the laboratory NMOC concentration in terms of carbon was converted to hexane by dividing by six. This resulted in an average NMOC concentration of **675** ppmv as hexane in Phase III, **1,307** ppmv as hexane in Phase III, Cell 1, and **640** ppmv as hexane in Phase III, Cell 2. These site-specific NMOC concentrations are used in evaluating the Landfill's revised NMOC emissions.

$$NMOCConc_{PhaseII} = \left(\frac{3,993\,ppmv + 3,937\,ppmv + 4,210\,ppmv}{3}\right) = \left(\frac{4,047\,ppmv_{carbon}}{6}\right) = 675\,ppmv_{hexane}$$

$$NMOCConc_{\textit{PhaseIII},Cell1} = \left(\frac{7,696\,ppmv + 7,825\,ppmv + 8,004\,ppmv}{3}\right) = \left(\frac{7,842\,ppmv_{\textit{carbon}}}{6}\right) = 1,307\,ppmv_{\textit{hexane}}$$

$$NMOCConc_{PhaseIII,Cell2} = \left(\frac{(3,433\,ppmv*3) + (4,731\,ppmv*3) + (2,407\,ppmv*1)}{7}\right) = \left(\frac{3,843\,ppmv_{carbon}}{6}\right) = 640\,ppmv_{hexane}$$

EXHIBIT 1. NMOC LABORATORY SUMMARY

Sample Identification	Sample	NMOC Carbon	NMOC Hexane
Number	Description	(ppmv)	(ppmv)
WSL-061504-01	Phase II Header Sample	3,993	666
WSL-061504-02	Phase II Header Sample	3,937	656
WSL-061504-03	Phase II Header Sample	4,210	702
WSL-061504-04	Phase III, Cell 1 Header Sample	7,696	1,283
WSL-061504-05	Phase III, Cell 1 Header Sample	7,825	1,304
WSL-061504-06	Phase III, Cell 1 Header Sample	8,004	1,334
WSL-061504-04	Phase III, Cell 2 Collector Sample	3,433	572
WSL-061504-04	Phase III, Cell 2 Collector Sample	4,731	789
WSL-061504-04	Phase III, Cell 2 Collector Sample	2,407	401

Tier 2 Landfill Emissions Estimation Model Outputs

The Tier 2 NMOC emissions estimates for the Landfill (Phases II and III only) were performed using the EPA LAEEM. The model inputs established in Section 60.754(a)(1), the site's field-derived average NMOC concentrations, and the refuse fill history of the facility were used to perform the Tier 2 models and are as follows:

- Methane Generation Potential (Lo) 170.0 m³/Mg. (Default value cited by NSPS)
- Methane Generation Rate Constant (k) -0.05 1/year. (Default value cited by NSPS)
- Phase II NMOC Concentration 675 ppmv as hexane. (Field sampling values)
 Phase III, Cell 1 NMOC Concentration 1,307 ppmv as hexane
 Phase III, Cell 2 NMOC Concentration 640 ppmv as hexane
- Refuse Filling History SCS used tonnage records provided by the City, and estimated by projecting waste disposal based upon a five percent yearly increase.

According to the EPA LAEEM, the 2004 NMOC emissions from Phases II and III exceed the 50 Mg/year threshold for the Landfill. Since the NMOC emissions exceed the 50 Mg/year threshold for Phases II and III, site-specific NMOC testing for Phase I was not conducted. Copies of the Tier II model outputs are included in Appendix F. The results of the models are summarized below in Exhibit 2.

EXHIBIT 2. NMOC EMISSIONS ESTIMATE

Year	Site-Wide Refuse In-Place (tons)	Phase II NMOC Generation Rates (Mg/yr)	Phase III, Cell 1 NMOC Generation Rates (Mg/yr)	Phase III, Cell 2 NMOC Generation Rates (Mg/yr)	Phases II & III NMOC Generation Rates (Mg/yr)
2004	10,075,048	97	55	20	172
2005	10,210,501	92	53	23	168
2006	10,351,991	87	50	27	164
2007	10,500,556	83	48	30	161
2008	10,656,549	79	45	34	158

CONCLUSIONS AND RECOMMENDATIONS

Since the Landfill has exceeded the 50 Mg/year NMOC emission rate, one of the following options must now be implemented.

- Conduct Tier 3 methane generation rate sampling and analysis as provided in 40 CFR §60.754(a)(4) in hopes of lowering the site-specific k constant; or,
- Submit a GCCS design plan prepared by a professional engineer within one year of the emissions exceedance date in accordance with 40 CFR §60.752(b)(2)(i), namely May 18, 2005. Installation of the GCCS must be complete within 18 months after the submittal of the design plan (November 18, 2006).

It should be noted that Tier 3 testing can be a costly process that often does not produce the desired results (i.e., significantly lowering the site's NMOC concentration). For these reasons, SCS rarely recommends this type of testing and does not recommend a Tier 3 for the White Street Landfill.

APPENDIX A

SCS SAMPLING PROTOCOL AND SIGNIFICANT CORRESPONDENCE

SCS ENGINEERS, PC

April 28, 2004 File No. 02203314.00

Mr. Gregg O'Neal North Carolina Department of Environment and Natural Resources Division of Air Quality 1641 Mail Service Center Raleigh, North Carolina 27699-1641

Subject:

NSPS Tier 2 Sampling Protocol

White Street Landfill - Greensboro, North Carolina

Dear Mr. O'Neal:

SCS Engineers, PC (SCS) is pleased to submit the testing protocol for Tier 2 sampling at the White Street Landfill (Landfill) in Greensboro, North Carolina. The Landfill is regulated according to the U.S. Environmental Protection Agency's (EPA's) New Source Performance Standards (NSPS) for Municipal Solid Waste Landfills. Using Tier 1 defaults provided in the EPA's Landfill Gas Emission Model (LandGEM), the Landfill's estimated non-methane organic compound (NMOC) emissions were greater than 50 Megagrams (Mg) per year. As a result, Tier 2 sampling was performed in April 1999 by SCS Engineers to establish a site-specific NMOC concentration. Since the site-specific NMOC concentration is only valid for five years, SCS will determine a new site-specific NMOC concentration for the Landfill using EPA Method 25C (i.e., Tier 2 sampling).

Accordingly, SCS has developed a sampling protocol to determine the site-specific NMOC concentration in the LFG at the Landfill. A complete discussion of the proposed sampling program is included as Attachment A for your review and approval.

If you have any questions about this submittal, please feel free to call either of the undersigned at (704) 377-4766.

Very truly yours,

Erin C. Conklin/scl

Staff Engineer

SCS ENGINEERS, PC

Steven C. Lamb, P.E.

Office Director

SCS ENGINEERS, PC

Attachment A – Sampling Protocol

cc:

Greg Thomasson, City of Greensboro

ATTACHMENT A

TIER 2 SAMPLING PROTOCOL

SCS ENGINEERS, PC

April 28, 2004 File No. 02203314.00

FILE COPY

Mr. Ray Stewart
North Carolina Department of Environment and Natural Resources
Division of Air Quality, Winston-Salem Regional Office
585 Waughtown Street
Winston-Salem, North Carolina 27107

Subject:

NSPS Tier 2 Sampling Protocol

White Street Landfill - Greensboro, North Carolina

Dear Mr. Stewart:

SCS Engineers, PC (SCS) is pleased to submit the testing protocol for Tier 2 sampling at the White Street Landfill (Landfill) in Greensboro, North Carolina. The Landfill is regulated according to the U.S. Environmental Protection Agency's (EPA's) New Source Performance Standards (NSPS) for Municipal Solid Waste Landfills. Using Tier 1 defaults provided in the EPA's Landfill Gas Emission Model (LandGEM), the Landfill's estimated non-methane organic compound (NMOC) emissions were greater than 50 Megagrams (Mg) per year. As a result, Tier 2 sampling was performed in April 1999 by SCS Engineers to establish a site-specific NMOC concentration. Since the site-specific NMOC concentration is only valid for five years, SCS will determine a new site-specific NMOC concentration for the Landfill using EPA Method 25C (i.e., Tier 2 sampling).

Accordingly, SCS has developed a sampling protocol to determine the site-specific NMOC concentration in the LFG at the Landfill. A complete discussion of the proposed sampling program is included as Attachment A for your review and approval.

If you have any questions about this submittal, please feel free to call either of the undersigned at (704) 377-4766.

Very truly yours,

Erin C. Conklin /SCL

Staff Engineer

SCS ENGINEERS, PC

Steven C. Lamb, P.E

Office Director

SCS ENGINEERS, PC

Attachment A – Sampling Protocol

cc: Greg Thomasson, City of Greensboro

ATTACHMENT A

TIER 2 SAMPLING PROTOCOL WHITE STREET LANDFILL GREENSBORO, NORTH CAROLINA

This protocol describes the method for selecting sample locations and the procedures for collecting landfill gas (LFG) samples at White Street Landfill located in Greensboro, North Carolina. The purpose of the sampling is to establish a site-specific non-methane organic compound (NMOC) concentration in the LFG for use in determining the applicability of the New Source Performance Standards (NSPS) to LFG collection at the White Street Landfill.

This protocol was prepared by SCS Engineers, PC (SCS) on behalf of the City of Greensboro and the White Street Landfill.

BACKGROUND

White Street Landfill consists of several distinct municipal solid waste (MSW) landfill areas, which for the purpose of this compliance issue, are grouped into three phases: Phase I, Phase II and Phase III. Phase I is the oldest of the three areas. It is approximately 65 acres in size and contains land clearing and inert debris (LCID) deposited on top of MSW. This phase was filled with MSW between the years 1965 and 1978 and contains approximately 3.0 million tons of MSW. The City of Greensboro (City) began disposing of LCID on top of the MSW in 1999 and is currently continuing this activity. Phase I does not have a LFG collection system.

Phase II is an unlined, 145-acre area that received approximately 5.4 million tons of MSW from 1978 to 1998. A comprehensive active LFG extraction system is installed and operated by Duke Engineering and Services (DES) in this phase. LFG from Phase II is collected and either conveyed to Cone Mills via a transmission pipeline, or flared at the Phase II blower/flare station.

Phase III, a subtitle-D lined, 52-acre area, began receiving waste in 1997. Phase III consists of three cells. Cell 1 is approximately 25 acres in size and contains a horizontal collector gas extraction system that conveys LFG to a passive flare. Cell 2 is approximately 15 acres in size and is the current active portion of the landfill. Cell 2 contains five horizontal LFG collectors that are not connected to a flare at this time. However, in the next few months, the City of Greensboro will be connecting the collectors from Cells 1 to a new blower/flare station located next to Phase III. Cell 3 is approximately 12 acres in size and filling has not yet begun in this area.

SAMPLE LOCATIONS

Section 60.754(a)(3) of the NSPS for municipal solid waste landfills states that when conducting Tier 2 testing, the landfill owner must install at least two sample probes per hectare (2.47 acres) of landfill surface that has retained waste for at least two years. However, if the landfill is larger than 25 hectares in area, only 50 samples are required.

The total landfilled area at White Street Landfill is approximately 250 acres (101 hectares). Since the area of landfill at the site is greater than 25 hectares, 50 probes are required. To space the probes evenly across the landfill, a probe density of 1 probe per 5 acres is necessary. This would result in 13 probes in the 65-acre Phase I area, 29 probes in the 145-acre Phase II area, and eight probes in the Phase III area.

PHASE I PROBED SAMPLES

Samples from Phase I will be collected using the pilot probe procedure described in U.S. EPA Method 25C. SCS will use composite sampling as allowed under §60.574(b)(3). A maximum of five samples will be collected into a single canister, with each sample being of equal volume. Since the MSW in Phase I has been mostly overfilled by LCID, SCS intends to composite samples in this phase from the area that has not been overfilled by LCID. By collecting samples from this area, SCS will be avoiding areas of known nondegradable solid waste, as specified in §60.574(a)(3). Each sample probe will be installed to a depth of at least one meter below the bottom of the landfill cap, which is estimated to be two to three feet thick. The maximum probe depth will be approximately 12 feet (3.7 meters). A direct-push (geoprobe) rig will be used to install the probes. After pushing the pilot probe to the required depth, the pilot probe will be removed and a stainless steel sampling probe will be installed in the pilot hole. The sampling probe will be capped at the bottom, and the bottom one-third will be perforated. A threaded cap and sampling attachment will be connected to the top of the probe. The annular space around the probe at the top of the hole will be filled with soil from the existing landfill cap.

The sampling train will be in accordance with Method 25C and include the following components: teflon tubing, purge pump or vacuum tank, sampling valves, rotameter, vacuum gauge and a pre-evacuated six-liter stainless steel SUMMA canister.

The sampling procedure will be in accordance with Section 4.4 of Method 25C. A purge pump or vacuum tank will be used to evacuate at least two probe volumes at a flow rate of 500 milliliters per minute (ml/min) or less. After purging, a Landtec GEM-500 gas monitor will be used to measure the volumetric concentrations of methane, carbon dioxide, oxygen and balance gas, which is assumed to be almost entirely nitrogen. The purpose of measuring gas quality with the GEM-500 is to ensure that the nitrogen concentration is less than 20 percent as required by Method 25C. The oxygen reading is also important in the case where the LFG contains a high concentration of residual nitrogen.

U.S. EPA is aware of the potential of high residual nitrogen in some landfills and has amended Method 25C to address this issue. After checking the gas quality, the sample valves will be turned so that LFG will only flow to the SUMMA canister, and the rotameter will be closed. The valve on the canister will be opened and the rotameter adjusted to allow a sampling flow rate of 500 ml/min or less. During sampling, the sampling data such as canister vacuum, sampling time and flow rate, etc. will be recorded. After one liter of gas is collected, the canister will be closed and the sampling probe removed. The abandoned hole

will be filled with soil. As mentioned earlier, equal volumes of LFG samples will be composited into canisters at a maximum rate of three samples per six-liter canister.

PHASE II HEADER SAMPLES

Because a comprehensive LFG collection system is installed in Phase II, SCS proposes to collect gas samples from the main LFG header instead of using shallow probes. This method was previously used five years ago at this site and has since been clarified in the Federal Register Section 60.754, dated October 17, 2000. The LFG samples will be taken at a location along the header between Phase II and the blower/flare station, prior to the main condensate knockout tank. Three samples of at least three liters each will be collected into separate canisters from the sample location. In past guidance, EPA has stated that three samples should be taken when sampling using this alternative procedure. This approach is also consistent with the sampling method suggested in §60.754(b)(2) for determining NMOC concentrations at landfills seeking to determine if the collection systems can be shut down as provided in §60.752(b)(2)(v). Since the LFG collection system influences a larger volume of refuse than would probes installed one meter into the refuse, it is reasonable to expect a more representative gas sample from the LFG collection system than would be provided by shallow probes.

PHASE III HEADER SAMPLES

Currently, Phase III, Cell 1 has eight horizontal LFG collectors that run north to south in the cell and are overlain with approximately 30 feet of MSW. These horizontal LFG collectors are connected to a temporary aboveground header pipe that conveys LFG to a passive flare. In the next few weeks, the City of Greensboro is connecting these horizontal collectors to the Phase III blower flare station by installing a permanent belowground header pipe. Rather than install shallow probes in this landfill area, SCS proposes to collect LFG samples from the permanent header in the manner described in the sampling procedure for Phase II above (e.g. three samples of at least three liters each). Since the LFG collection system influences a larger volume of refuse than would probes installed one meter into the refuse, it is reasonable to expect a more representative gas sample from the LFG collection system than would be provided by shallow probes.

Phase III, Cell 2 has five horizontal collectors that run north to south in the cell and are overlain with approximately 30 feet of MSW. Rather than install shallow probes in this landfill area, SCS proposes to collect LFG samples from each horizontal collector. The five samples collected will be composited into two SUMMA canister as allowed under $\S60.574(b)(3)$. Because these collectors are relatively deep and directly influence a greater volume of refuse than shallow probes, samples taken from the collectors will be more representative of the overall LFG quality than samples taken from probes. This is similar to the rationale for sampling from the main LFG collection system header described above, and has been approved by U.S. EPA as an acceptable approach on numerous occasions.

SAFETY CONSIDERATIONS

Landfill gas contains methane and therefore is potentially explosive. SCS personnel are experienced with landfill operations, LFG collection systems, and the proper sampling and handling of LFG. Standard safety precautions include refraining from smoking or creating sparks near the test site and using explosion-proof equipment. SCS will follow safety precautions outlined in EPA Method 25C.

No special safety equipment is required for the test. However, all testing personnel will wear clothing appropriate for a landfill environment such as steel-toed boots and long pants. Hard hats, ear protection, and eye protection are not specifically required by the Landfill at the testing site; however, all testing personnel will have such equipment available to use, as needed based on field conditions.

LABORATORY ANALYSIS

Samples will be shipped to a laboratory for NMOC analysis per Method 25C and nitrogen and oxygen analysis per Method 3C. The resulting site-specific NMOC concentrations will then be used in EPA's Landfill Gas Emission Model to calculate the Tier 2 NMOC emissions. Note that the analytical results of the three samples from the LFG collection header in Phase II will be averaged; the average NMOC concentration is the one that will be used to model NMOC generation from Phase II. Likewise, the average NMOC concentration from the probed samples will be used to model NMOC generation from Phase I and the average weighted concentration from the samples collected in the two cells in Phase III will be used to estimate NMOC generation from Phase III.

AUDIT SAMPLES

While Method 25C includes a provision for the possible use of audit samples, it is our understanding through numerous conversations with U.S. EPA that since an audit sample appropriate for EPA Method 25C has not yet been developed, they are not recommending their use at this time. Furthermore, EPA recommends against using any substitute audit sample (such as one for Method 25) in its place, since the organic components may not be appropriate. In addition, EPA has not yet established pass-fail criteria for a Method 25C audit sample. For the reasons stated above, audit samples will not be used for the Tier 2 sampling and analysis.

FINAL REPORT

Upon completion of the sampling and analysis, a Tier 2 NMOC emission estimate report will be prepared and submitted to the North Carolina Department of Environment and Natural Resources (NCDENR). This report will include the following:

- Letter report summarizing the fieldwork, lab results, and NMOC emission calculations;
- Copies of significant correspondence between SCS and NCDENR;

- Copies of field sampling forms;
- Copy of lab data report including the chain of custody;
- Site plan showing the sample locations; and,
- LandGEM modeling and appropriate calculations.

E:/PROJECT FILES/02203314.00 White St LF/Tier 2/Sampling Protocol.doc

704 377-4766 FAX 704 377-4768 www.scsengineers.com

SCS ENGINEERS, PC

May 4, 2004 File No. 02203314.00

Mr. Gregg O'Neal North Carolina Department of Environment and Natural Resources Division of Air Quality 1641 Mail Service Center Raleigh, North Carolina 27699-1641

Subject:

NSPS Tier 2 Sampling Protocol - Additional Information

White Street Landfill - Greensboro, North Carolina

Dear Mr. O'Neal:

SCS Engineers, PC (SCS) is pleased to submit the testing protocol form for Tier 2 sampling at the White Street Landfill (Landfill) in Greensboro, North Carolina. This submittal is per your telephone request on April 29, 2004. Please attach the enclosed information to the previous submittal of Attachment A, Tier 2 sampling protocol.

If you have any questions about this submittal, please feel free to call either of the undersigned at (704) 377-4766.

Very truly yours,

Erry C. Corblin / SUL

Staff Engineer

SCS ENGINEERS, PC

Steven C. Lamb, P.E.

Office Director

SCS ENGINEERS, PC

Attachments

cc: Ray Stewart, NCDENR DAQ - Winston-Salem Regional Office

Greg Thomasson, City of Greensboro

PROTOCOL SUBMITTAL FORM

DIVISION OF AIR QUALITY

PAGE 1 OF

Purpose: facility,

The primary goals of the Protocol Submittal Form are to initiate communication between representatives of the permitted the testing consultants, and the DAQ as well as to identify and resolve any specific testing concerns prior to testing.

Instructions: Submit all forms and additional information to the DAO Regional Supervisor at least 45 days prior to testing. Please type or print clearly. Complete one form for each sampling location. If this form does not supply sufficient space to completely

answer all questions or if additional relevant information is necessary, attach additional documentation and/or information to the original form. Questions and/or comments should be directed to the appropriate Regional Supervisor.

to the original form. Question This form is avail	is and/or comments s able from the DAQ	should be dir website (ht	ected to the app p://daq.state.n	propriate l c.us/enf/s	Regional Superv sourcetest/)	isor.
Specify Appropriate Regional Office: (checi						
	Mooresville	Raleigh	☐ Washing	ton [Wilmington	Winston-Salem
Facility Name: White Street Landfill		Testing (Company: SCS	Engineers	s, PC	
Facility Address/City/County: P.O. Box 3136 Greensboro, NC 27402-3136 Guilford County NOTE: Contact not located at facility.		129 Wes Suite 16 Charlott	e, NC 28202			
Contact Person: Greg Thomasson, P.E.		Contact	Person: Erin C	onklin OR	Steve Lamb, P.	E.
Phone: (336) 373-4107 Fax: (336)	373-2988	Phone: (1704) 37	478) 284-9392 7-4766	OR	Fax: (919) 9. (704) 377-47	
Air Permit Number: 08830T01		MSW lan	d Source Name dfill; ES-2: Noi f MSW landfill	and ID No	o.: ES -1: Non-a ortion of MSW l	ective portion of andfill; ES-3: Active
Permitted Maximum Process Rate: Not Applicable3	Maximum Normal Not Applicable	Operation F	Process Rate:	Target I Not App	Process Rate for plicable	Testing:
1.1) What is the specific purpose for the prop Testing is proposed for five-year non-me Performance Standards (NSPS), 40 CFR	thane organic compo	ound (NMOC	E) concentration	ı calculatı	ions as specified	in the New Source
1.2) List all state and federal regulations that NSPS, 40 CFR Subpart WWW	apply to the propose	ed testing:				
1.3) Will the test results be used for other regular to Yes or No? If yes, explain. The NMOC concentration calculated from						
1.4) How will production/process data be doc Landfill gas samples will be collected usi and for nitrogen and oxygen using EPA M final test report.	ng EPA Method 25C	C. These sam	ples will then b	e analyze	d for NMOC using	ng EPA Method 25C to be included in the
1.5) Please provide a brief description of the s The sources consists of three phases, Pha have a GCCS, and Phase III, which does	se I, which does not	have a gas c	ollection and co	ontrol syst	tem (GCCS). Phi	agram: ase II, which does
1.6) Please provide a brief description of the s testing will be conducted at other samplin See Attachment A, Tier 2 Sampling Protoc	g locations:					ether concurrent

PROTOCOL SUBMITTAL FORM

DIVISION OF AIR QUALITY

PAGE 2 OF

2.1) Please provide th	e following informatio	n for each test	parameter.				
Target Pollutant	Proposed Test Method	Number of Test Runs	Test Run Duration	# of Sampling Points	Comments	ACT THE THE PERSON NAMED IN	Tels market
NMOC	25C	NA	NA	13	Phase I Sampling. See Attac	hment A.	
NMOC	25C	NA	NA	1	Phase II Sampling. See Atto	achment A	1.
NMOC	25C	NA	NA	6	Phase III Sampling. See Att	achment A	1.
							*
				9			
2.2) Will all testing be complete document	e conducted in strict ac ntation of all modificat	cordance with tions and/or de	the applicable viations to the	e test methods? applicable test m	If answer is no, please attach tethods.	☐ Yes	⊠ No
2.3) Does the proposed Please attach sup	d sampling location me porting documentation	eet the minimur 1.	n EPA Method	l 1 criteria for ac	ceptable measurement sites?	☐ Yes	□ No
2.4) Has absence of cy flow must be verif	vclonic flow been verifi fied prior to testing. If	ed per EPA Me answer is yes,	ethod 1 (Sectio please attach s	n 2.4)? If answe supporting docum	r is no, absence of cyclonic nentation.	☐ Yes	□ No
2.5) Will the oxygen co answer is no, see	oncentration be determ Question 2.2 above.	ined by 🗌 EP	4 Method 3 via	Orsat or 🗌 stri	ct EPA Method 3A?(specify) If	☐ Yes	⊠ No
2.6) Do any of the prop days prior to testing	posed test methods req ng to allow for audit sa	uire analysis oj imple preparat	f EPA audit sa ion and shipm	mples? If yes, no	otify Regional Office at least 45	☐ Yes	⊠ No
2.7) Has all testing equ	uipment been calibrate	d within the pa	st year? If ans	swer is no, please	e explain.	⊠ Yes	□ No
2.8a) Have all calibration	on gases been certified	by EPA Protoc	col 1 procedur	es? (Answer only	as applicable)	☐ Yes	□ No
2.8b) Is a dilution system	n (via EPA Method 20.	5) proposed? (2	Answer only as	s applicable)		☐ Yes	□ No
Please attach a summa							
Due to ongoing co sampling timefram June 2004.	nstruction as described ne is	d in Attachmen	t A, the specifi	c Tier 2 sampling	at least 15 days prior to the active date cannot be given. However date cannot be given. However date cannot be given. Attachn	er, an app	roxima
Signatures: Represer the infor	ntatives from the permi mation provided on thi	itted facility <u>an</u> is form and any	d the contracted attached info	ed testing compar rmation is accur	ny <u>must provide signatures</u> belo ate and complete.	w certifyi	ing that
Permitted Facility	y Representative	/Date	e	Testing Comp	Out 1	5/4/z	. 3
Name: Greg	Thomasson, P.E.			Name: S	teve C. Lamb, P.E.		
Title: Techn	nical & Planning Supp	ort Manager		Title: P	roject Manager		
Company: City o	of Greensboro			Company: Se	CS Engineers, PC		

FLOW CHART

FIGURE 1. WHITE STREET LANDFILL SITE PLAN

FILE NAME: 02203314.00

APPENDIX B

NCDENR SAMPLING PROTOCOL APPROVAL LETTER

North Carolina Department of Environment and Natural Resources Division of Air Quality

Michael F. Easley, Governor

William G. Ross, Jr., Secretary B. Keith Overcash, P.E., Director

May 20, 2004

Mr. Greg Thomasson, P.E.
Technical and Planning Support Manager
City of Greensboro
P.O. Box 3136
Greensboro, NC 27402-3136

Guilford County

Subject: City of Greensboro - White Street Landfill, Facility ID 04-41-01086

Greensboro, Guilford County, North Carolina, Air Permit 08830T01,

Protocol for 5-Year Nonmethane Organic Compounds (NMOC) Tier 2 Emissions Retest of the

NSPS Subpart WWW, Nonactive Portions of Landfill (ID Nos. ES-1 and ES-2) and

Active Portion of Landfill (ID No. ES-3), Phases I, II, and III

For a Revised Site-Specific NMOC Concentration and NMOC Emissions Rate

Submitted by SCS ENGINEERS, PC - Charlotte, NC

Proposed Test Date: First Week of June, 2004

Dear Mr. Thomasson:

The emissions test protocol for the subject landfill gas collection system has been reviewed. Testing will quantify the NMOC emissions for compliance with 40 CFR 60 Subpart WWW, Standards of Performance for Municipal Solid Waste Landfills. The table below lists the pollutants and test methods:

Target Pollutant	Proposed Test Method
Carbon Dioxide and Oxygen	USEPA Method 3C: Determination of Carbon Dioxide, Methane, Nitrogen, and Oxygen from Stationary Sources (Sampling concurrent with USEPA Method 25C testing.)
NMOC	USEPA Method 25C: Determination of Nonmethane Organic Compounds (NMOC) in Landfill Gases (Sampling concurrent with USEPA Method 3C testing.) ES-1 and ES-3 cell 2 will be sampled using composite equal volume sampling collected from 13 (ES-1) sample probes and 6 (ES-3 cell 2) passive horizontal gas collectors. ES-2 and ES-3 cell 1, sampling will require 3 separate sample collections from each common header test location.

Note: Composite sampling will be conducted for ES-1 phase I and ES-3 phase III cell 2. When composite sampling, an equal volume must be collected from each of the sample probes. ES-2 phase II and ES-3 phase III cell 1 will each be sampled from a common header pipe location. A minimum of 3 separate samples should be collected at each common header test location.

Technical Services Section

1641 Mail Service Center, Raleigh, North Carolina 27699-1641 2728 Capital Blvd., Raleigh, North Carolina 27604 Phone: 919-733-1728 / FAX 919-733-1812 / Internet: www.ncair.org

Mr. Greg Thomasson, P.E., City of Greensboro May 20, 2004 Page 2 (White Street Landfill, 5-Year NMOC Tier 2 Emissions Retesting ES-1, ES-2, and ES-3)

The test protocol is approved. USEPA Region 4 has approved composite sampling from the six phase III cell 2 passive horizontal gas collectors, since this approach should provide sampling that is as representative as the two sampling probes per hectare requirement. Therefore, composite sampling from the phase III cell 2 passive horizontal gas collectors will be considered representative.

ES-1 phase I and ES-3 phase III cell 2 will be sampled using composite sampling with an equal volume of sample collected at each of the 13 ES-1 sample probes and from each of the ES-3 cell 2 sample probes (6 passive horizontal gas collectors). ES-2 and ES-3, phase II and phase III cell 1 respectively, will each be sampled at a common header pipe location since both of these phases have landfill gas collection systems. When emissions testing at a common header pipe location, a minimum of 3 separate samples should be collected atteach common header test location.

White Street Landfill shall be responsible for ensuring, within the limits of practicality, that the landfill gas collection systems are operated at or near the maximum normal process rate. The final test report will include information to establish that the near maximum normal requirement was met during the test period.

The proposed methods are acceptable. Approval of the testing proposals does not exempt the tester, in any way, from the minimum requirements of the applicable test methods. Any deviations from the applicable methodologies remain subject to the approval of the Division of Air Quality and the USEPA. If there are any additional questions concerning this matter, please contact me at (919) 715-0251 or at Gregg.Oneal@ncmail.net.

Sincerely,

Thomas G. O'Neal, III, P.E.

Thomas, III

Environmental Engineer

cc: Steven C. Lamb, P.E., SCS ENGINEERS, PC, File No. 02203314.00 - Charlotte, NC Erin C. Conklin, SCS ENGINEERS, PC, File No. 02203314.00 - Charlotte, NC David McNeal, USEPA REGION 4 - Atlanta, GA Myron Whitley, Winston-Salem Regional Office SSCB File via Michael Y. Aldridge Central Files, Guilford County IMPAO - Documents - 4101086 (Filename: scs_0604.doc)

APPENDIX C SITE MAP AND TIER 2 SAMPLING LOCATIONS

WHITE STREET LANDFILL SITE PLAN

APPENDIX D

TIER 2 SAMPLING LOGS AND ATMAA CHAIN OF CUSTODY FORMS

PROJECT/ PROJECT NO./CLIENT	PROJECT LOCATION	DATE	WEATHER	PERSONNEL	
White Street Landfill	City of Greensboro, NC	15-Jun-04	Overcast; Humid	E. Conklin, SCS	Page 1 of 5
Tier 2 Sampling - 02203314.00	Guilford County		Mid-70's		
SUMMA CANISTER ID	WSL-061504-01	WSL-061504-02	WSL-061504-03	PHASE II HEADER SAMPLES	DER SAMPLES
CANISTER VOLUME (L)	9	9	9	(3 Canisters)	isters)
TOTAL CANISTER VACUUM (in Hg)	-19.9	-20.0	-20.1		
SAMPLE NO.	1	2	3		
CANISTER VACUUM/VOL (in Hg/L)	5.0	5.0	5.0		
AMBIENT TEMPERATURE (F)	72	76	75	,	
BAROMETRIC PRESSURE (in Hg)	30.15	30.15	30.15		
THE REAL PROPERTY AND ADDRESS OF THE PARTY AND					
TIME: BEGIN PURGE	not applicable*	not applicable*	not applicable*		
PURGE RATE (ml/min)	not applicable*	not applicable*	not applicable*		
TIME: END PURGE	not applicable*	not applicable*	not applicable*		
PURGE VOLUME (L)	not applicable*	not applicable*	not applicable*		
GEM 500: % METHANE	51.6	52.5	52.2		
GEM 500: % CO2	40.7	41.4	40.4		
GEM 500: % O2	0.0	1.5	0.6		
GEM 500: % NITROGEN (balance)	7.7	4.6	6.8		
			Commence of the second		
CANISTER VAC: INITIAL (in Hg)	-19.9	-20.0	-20.1		
CANISTER VAC: FINAL (in Hg)	-4.9	-5.0	-5.1	the state of the	
TIME: BEGIN FILL	7:36 AM	8:00 AM	8:18 AM		
SAMPLE FILL RATE (ml/min)	158	231	200		
TIME: END FILL	7:55 AM	8:13 AM	8:33 AM		
SAMPLE VOLUME (L)	3.0	3.0	3.0		
PROBE DEPTH (FT)	not applicable*	not applicable*	not applicable*		

* Not applicable due to sample being drawn from the LFG collection system header instead of sample probes.

PROJECT/ PROJECT NO./CLIENT	PROJECT LOCATION	DATE	WEATHER	PERSONNEL	STATE OF THE PERSON NAMED IN COLUMN
White Street Landfill	City of Greensboro, NC	15-Jun-04	Overcast: Humid	E. Conklin, SCS	Page 2 of 5
Tier 2 Sampling - 02203314.00	Guilford County		Upper-70's		0
SUMMA CANISTER ID	WSL-061504-04	WSL-061504-05	WSL-061504-06	PHASE III, CELL 1 HEADER SAMPLES	HEADER SAMPLES
CANISTER VOLUME (L)	9	9	9	(3 Can	(3 Canisters)
TOTAL CANISTER VACUUM (in Hg)	-20.3	-20.1			
SAMPLE NO.	4	5	9		9 9 9 9
CANISTER VACUUM/VOL (in Hg/L)	5.0	5.0	5.0	****	***************************************
AMBIENT TEMPERATURE (F)	78	77	80		
BAROMETRIC PRESSURE (in Hg)	30.15	30.15	30.15		84
					でいる 日本の はない はいかい
TIME: BEGIN PURGE	not applicable*	not applicable*	not applicable*	×	1010
PURGE RATE (ml/min)	not applicable*	not applicable*	not applicable*		
TIME: END PURGE	not applicable*	not applicable*	not applicable*	•••••	
PURGE VOLUME (L)	not applicable*	not applicable*	not applicable*		
					THE RESIDENCE OF THE PARTY OF T
GEM 500: % METHANE	60.7	62.2	61.9	••••	
GEM 500: % CO2	39.3	37.8	38.1		
GEM 500: % O2	0.0	0.0	0.0	•===	
GEM 500: % NITROGEN (balance)	0.0	0.0	0.0		
	日本の一番の一番の				
CANISTER VAC: INITIAL (in Hg)	-20.3	-20.1	-20.3		•
CANISTER VAC: FINAL (in Hg)	-5.3	-5.1	-5.3		
TIME: BEGIN FILL	9:13 AM	9:38 AM	10:00 AM		-
SAMPLE FILL RATE (ml/min)	250	214	273		
TIME: END FILL	9:25 AM	9:52 AM	10:11 AM		
SAMPLE VOLUME (L)	3.0	3.0	3.0		•
PROBE DEPTH (FT)	not applicable*	not applicable*	not applicable*		

* Not applicable due to sample being drawn from the LFG collection system header instead of sample probes.

PROJECT/ PROJECT NO./CLIENT	PROJECT LOCATION	DATE	WEATHER	PERSONNEL	
White Street Landfill	City of Greenshoro, NC	15-Jun-04	Overcast: Humid	F Conklin SCS	Page 3 of 5
Tier 2 Sampling - 02203314.00	Guilford County		Lower 80's	COC (mumit)	0.10 C 291
SUMMA CANISTER ID	WSL-061504-07	PHA:	SE III, CELL 2 HORIZON	PHASE III, CELL 2 HORIZONTAL COLLECTOR SAMPLES	PLES
CANISTER VOLUME (L)	9	3	HC SAMPLES COMPOS	(3 HC SAMPLES COMPOSITED INTO 1 CANISTER)	8
TOTAL CANISTER VACUUM (in Hg)	-20.0				
SAMPLE NO.	7	8	6		
CANISTER VACUUM/VOL (in Hg/L)	5.0	5.0	5.0		
AMBIENT TEMPERATURE (F)	77	81	84		
BAROMETRIC PRESSURE (in Hg)	30.15	30.15	30.15		
			TO THE REAL PROPERTY OF THE PARTY OF THE PAR		大道 ないしょう おかか 西川の
TIME: BEGIN PURGE	not applicable*	not applicable*	not applicable*		
PURGE RATE (ml/min)	not applicable*	not applicable*	not applicable*		
TIME: END PURGE	not applicable*	not applicable*	not applicable*		
PURGE VOLUME (L)	not applicable*	not applicable*	not applicable*		•
GEM 500: % METHANE	57.6	56.6	58.0	•=•=•	
GEM 500: % CO2	42.4	43.4	42.0	****	
GEM 500: % O2	0.0	0.0	0.0		-
GEM 500: % NITROGEN (balance)	0.0	0.0	0.0	•	
				THE PERSON ASSESSMENT OF	
CANISTER VAC: INITIAL (in Hg)	-20.0	-15.0	-10.0	****	*****
CANISTER VAC: FINAL (in Hg)	-15.0	-10.0	-5.0		
TIME: BEGIN FILL	10:29 AM	10:38 AM	10:48 AM		
SAMPLE FILL RATE (ml/min)	250	250	167		
TIME: END FILL	10:33 AM	10:42 AM	10:54 AM	•	
SAMPLE VOLUME (L)	1.0	1.0	1.0	* * * * * * * * * * * * * * * * * * *	9 9 9
PROBE DEPTH (FT)	not applicable*	not applicable*	not applicable*	3 3 3 5 7	9 9 9 9

* Not applicable due to sample being drawn from the LFG collection system horizontal collectors instead of sample probes.

PROJECT/ PROJECT NO./CLIENT	PROJECT LOCATION	DATE	WEATHER	PERSONNEL	100 mm 1
White Street I andfill	Olf Cacamana M	15 Tun 04	D.41. O.41.	14: 0.00	D 4 . C.
Tier 2 Sampling - 02203314.00	Guilford County	+0-IInc-C1	rating Sumiy Mid 80's	E. Conklin, SCS	rage 4 of 5
SUMMA CANISTER ID	WSL-061504-08	PHAS	SE III, CELL 2 HORIZON	PHASE III, CELL 2 HORIZONTAL COLLECTOR SAMPLES	IPLES
CANISTER VOLUME (L)	9	3)	HC SAMPLES COMPO	(3 HC SAMPLES COMPOSITED INTO 1 CANISTER)	R)
TOTAL CANISTER VACUUM (in Hg)	-20.7		1		
SAMPLE NO.	10	11	12		
CANISTER VACUUM/VOL (in Hg/L)	5.0	5.0	5.0	-	
AMBIENT TEMPERATURE (F)	87	06	88		-
BAROMETRIC PRESSURE (in Hg)	30.15	30.15	30.15		
TIME: BEGIN PURGE	not applicable*	not applicable*	not applicable*	· ••••	
PURGE RATE (ml/min)	not applicable*	not applicable*	not applicable*		
TIME: END PURGE	not applicable*	not applicable*	not applicable*		
PURGE VOLUME (L)	not applicable*	not applicable*	not applicable*		
	2000年の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の				
GEM 500: % METHANE	62.3	59.6	55.6		
GEM 500: % CO2	37.7	40.4	44.4		
GEM 500: % O2	0.0	0.0	0:0		1
GEM 500: % NITROGEN (balance)	0.0	0.0	0.0		
				MALE THE THE WILLS	以 100mm 100
CANISTER VAC: INITIAL (in Hg)	-20.7	-15.7	-10.6	***************************************	
CANISTER VAC: FINAL (in Hg)	-15.7	-10.7	-5.6		
TIME: BEGIN FILL	11:11 AM	11:18 AM	11:28 AM		
SAMPLE FILL RATE (ml/min)	250	200	167		***************************************
TIME: END FILL	11:15 AM	11:23 AM	11:34 AM	***************************************	
SAMPLE VOLUME (L)	1.0	1.0	1.0		
PROBE DEPTH (FT)	not applicable*	not applicable*	not applicable*	***************************************	

* Not applicable due to sample being drawn from the LFG collection system horizontal collectors instead of sample probes.

PROJECT/ PROJECT NO./CLIENT	PROJECT LOCATION	DATE	WEATHER	PERSONNEL	
White Street Landfill	City of Greensboro, NC	15-Jun-04	Partly Sunny	E. Conklin, SCS	Page 5 of 5
Tier 2 Sampling - 02203314.00	Guilford County	ń	Mid 80's		0
SUMMA CANISTER ID	WSL-061504-09	PHAS	E III, CELL 2 HORIZON	PHASE III, CELL 2 HORIZONTAL COLLECTOR SAMPLES	IPLES
CANISTER VOLUME (L)	9	(3)	HC SAMPLES COMPO	(3 HC SAMPLES COMPOSITED INTO 1 CANISTER)	R)
TOTAL CANISTER VACUUM (in Hg)	-20.4				
SAMPLE NO.	13	,			
CANISTER VACUUM/VOL (in Hg/L)	5.0				
AMBIENT TEMPERATURE (F)	84				
BAROMETRIC PRESSURE (in Hg)	30.15				1,1111
TIME: BEGIN PURGE	not applicable*	not applicable*	not applicable*		
PURGE RATE (ml/min)	not applicable*	not applicable*	not applicable*		
TIME: END PURGE	not applicable*	not applicable*	not applicable*		
PURGE VOLUME (L)	not applicable*	not applicable*	not applicable*		
となる 日本 ところ という ないこう 日本 はない 日本	· 医生物 · 医生物 · 医生物				
GEM 500: % METHANE	52.9				
GEM 500: % CO2	47.1				
GEM 500: % O2	0.0				
GEM 500: % NITROGEN (balance)	0.0				
一个一次是一个人的一个人的一个人的				A THE RESERVE AND ADDRESS.	
CANISTER VAC: INITIAL (in Hg)	-20.4			-	
CANISTER VAC: FINAL (in Hg)	-15.4			-	
TIME: BEGIN FILL	11:51 AM				
SAMPLE FILL RATE (ml/min)	200				
TIME: END FILL	11:56 AM				
SAMPLE VOLUME (L)	1.0	1.0	1.0		
PROBE DEPTH (FT)	not applicable*	not applicable*	not applicable*	-	

^{*} Not applicable due to sample being drawn from the LFG collection system horizontal collectors instead of sample probes.

	CHAIN OF		CUSTODY RECORD	RD		
Client/Project Name	Project Location			ANALYSES	REQUESTED	
City of Greensboro / white Street Landfill		Greensboro, North Carolina	arolina	(*\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		. SS.
Project No.	Field Logbook No.			V 3 3	<i></i>	
02203314.00				(b)		
Sampler: (Signature)	Chain of Custody Tape No.	Fape No.		2¢ 3¢	_	, –
Erin Conklin Evin Conklin			::,	Poy)ชน 	LOW
Sample No./ Type of Identification Sample	AtmAA Lab Number	Sampling Date	Sampling	H>W	Special Special	Special Remarks
WSL-061504-01 Vapor	9-18910	4015104	7:30 AM	7	美	李智成公外
WSL-061504-02 Vapor	۲-	40/51/9	B:00 AM	7	749	749 30:53 768
WSL-061504-03 Vapor	8	H0/51/07	B.ISAM	7	740	74 20 10 74 75 PF
WSL-061504-04 Vapor	6-	10/51/04	9:15AM	/		78°F
		Ť				
		880	5)			
75		,	:			
Relinquished by: (Signature)	Date 6/15/04	Time (2.15 Pm	Received by: (Signature)	(Signature)	Date	Time
natui	Date	 	Received by: (Signature)	(Signature)	Date	Time
Relinquished by: (Signature)	Date	Time	Received for	Received for Laboratory by: (Signature)	Date	iF /
	\			Day V	21/10	1041100
			7	Analytical Laboratory		`
Street Address 120 11 To 1	_			AtmAA Inc.		.· 1
City/State/Zip: Charlotte, NC	28202)) 		Calabasas, CA 91302		
				TEL: (818) 223-3277		
Tax NO: (04- 3//-+/08	×			FAK: (818) 223-8250		

	CHAIN OF	CUSTO	CUSTODY RECORD	RD			
Client/Project Name White Street	Project Location	-		(36)	ANALYSES REC	QUESTED	9
Lity of Greenshord (and Hill	Greensboro,	, North Carolina		un	HASINS	<i>'</i>	SS:
Project No.	Field Logbook No.) o	AJE O	nu 	.π .π.
02203314.00		* 999		52	244	ેટ - -	o'r.
	Chain of Custody Tape No.	oe No.		/ /	ر اد ا	7	940 42
Erin Conklin Evin Contlins			:3,	704	מים אינים	/dru	sou wo
.*	AtmAA Lab Number	Sampling Date	Sampling	wet	Haw Haw	Special Special	Special Remarks
WEL-OWISO4-DS Vapor	01-78910	+		1			30.15m 78°F
wsc-obisod-ob Vapor	11-	10/15/04	10:00 AM	?	W.	•	3015121206
wsc-obiso4-07 Vapor	-13	10/15/04 10:30 AM	10:30 AM	7		*	30.15 80 °F
wsc-obiso4-08 Vapor	-13	40/51/04	11:15 AM	7			30.15M3(°F
		(b)					
2.		,	:				
Relinquished by: (Signature) Erin Conklin Evin Conklin	Date 6/15/04	Time (2:15PM	Received by: (Signature)	(Signature)		Date	Time
Relinquished by: (Signature)	Date	Time	Received by: (Signature)	(Signature)		Date	Time
Relinquished by: (Signature)	Date	Time	Received for	Laboratory by	Received for Laboratory by: (Signeture)	Date (4/16/64	Time //so
Sample Collector Info			H	Analytical Laboratory	aboratory		
	Pc		₹ ;	AtmAA Inc.	nc.		··
Street Address 24 W Trade		630	· · · -	23917 Cra	23917 Craftsman Rd.		//
Telephone No.: 478-284-9392	392		# 1 1 to 1 to 1	TEL: (818	TEL: (818) 223-3277	(a)	
Fax No.: 704-377-4768	768			FAX: (818	(818) 223-8250	7	

City of Greenshoro " Landfill	Project Location	CUSTO	DY RECC	RD R	ORD A ANALYSES REQUESTED S ANALYSES REQUESTED	TED / '
	Field Logbook No.		ana ana	(0) E		ans esserts
Suir Contlin	Chain of Custody Tape No.	e No.		Pour Pour		143 MG
Type of Sample	AtmAA Lab Number	Sampling Date	Sampling	Haw Haw	<u></u>	50m
Vapor	4-48910	40/5/19	T	3	:	Solsky 84°F
33				f f	3	1
	ă	1.				
		ě				
		,	12			
		,				59.1
Relinquished by: (Signature) Erin Conklin Evin Conklin	Date 6/15/04	Time 12:15 PM	Received by: (Signature)	(Signature)		Date Time
Relinquished by: (Signature)	Date	Time	Received by: (Signature)	(Signature)		Date Time
Relinquished by: (Signature)	Date	Time	Received for	Received for Laboratory by: (\$ignatu	mature	Date Time
Company: SCS Engineers, PC	-		1	Analytical Laboratory AtmAA Inc.	atory	
City/State/Zip: Charlotte, Nc. 2. Telephone No.: 478-284-9392 Fax No.: 704-377-4768	片	0 		23917 Craftsman Rd. Calabasas, CA 91302 TEL: (818) 223-3277 FAX: (818) 223-8250	an Rd. 91302 -3277 -8250	

APPENDIX E ATMAA LABORATORY REPORT

Atm A Inc.

23917 Craftsman Rd., Calabasas, CA 91302 • (818) 223-3277 • FAX (818) 223-8250

environmental consultants laboratory services

June 30, 2004

LTR/350/04

Erin Conklin SCS Engineers 222 Old Fayetteville Rd., Suite K102 Camboro, NC 27510

re: White Street Landfill

Dear Erin:

Please find enclosed the laboratory analysis report, data package, and the original chain of custody forms for a total of nine SUMMA canister samples received June 16, 2004.

The samples were analyzed according to EPA Method 25C and EPA Method 3C, for TGNMO, nitrogen, and oxygen.

Sincerely,

AtmAA, Inc.

Michael L. Porter Laboratory Director

Encl. MLP/bwf

23917 Craftsman Rd., Calabasas, CA 91302 • (818) 223-3277 • FAX (818) 223-8250

environmental consultants laboratory services

LABORATORY ANALYSIS REPORT

Total Gaseous Non-Methane Organics (TGNMO), Nitrogen, and Oxygen Analysis in SUMMA Canister Samples

Report Date: June 30, 2004

Client: SCS Engineers

Site: White Street Landfill

Project No.: 02203314.00 Date Received: June 16, 2004

Date Analyzed: June 17, 18, 21, & 22, 2004

Instrumental Operator: Michael S. Porter

ANALYSIS DESCRIPTION

Total gaseous non-methane organics in SUMMA canisters was measured by flame ionization detection/ total combustion analysis (FID/TCA), EPA Method 25C. Nitrogen and oxygen were measured by thermal conductivity detection/ gas chromatography (TCD/GC), EPA Method 3C.

AtmAA	Sample			
Lab No.		Oxygen	Nitrogen	TGNMO
		(%,v)	(%,v)	(ppmv)
01684-6	wsl-061504-01	0.12	8.59	3993
01684-7	wsl-061504-02	0.17	8.30	3937
01684-8	wsl-061504-03	<0.1	7.79	4210
01684-9	wsl-061504-04	0.30	1.17	7696
01684-10	wsl-061504-05	0.12	0.71	7825
01684-11	wsl-061504-06	<0.1	0.56	8004
01684-12	wsl-061504-07	0.12	0.82	3433
01684-13	wsl-061504-08	0.81	3.31	4731
01684-14	wsl-061504-09	0.43	4.02	2407

TGNMO is total gaseous non-methane organics measured and reported as ppm methane. The reported oxygen concentration includes any argon present in the sample, calibration is based on a standard atmosphere containing 20.95% oxygen and 0.93% argon.

Note: Site barometric pressures and site temperatures which were recorded on the submitted chain of custody, were used in the concentration calculations.

Michael L. Porter Laboratory Director Date: June 30, 2004

AtmAA, Inc.

Laboratory Analysis Data Package

Client: SCS Engineers

Project No.: 02203314.00

Site: White Street Landfill, Greensboro, NC

Date Received: June 16, 2004

Date Analyzed: June 17, 18, 21, & 22, 2004

Lab No.: 01684-(6-14)

	Vanor	Pressure	20.09454	22.98062	22.22719	24.55448	24.55448	23.7562	26.22137	27.09113	29.85274
	(၃)	Temp	22.2222	24.44444	23.88889	25.55556	25.55556	25		27.22222	
	(F)	Temp	72	92	75	78	78	77	80	81	84
		g G	30.15	30.15	30.15	30.15	30.15	30.15	30.15	30.15	30.15
		Pvac	က	3	3	3	3	3	3	3	3
		P2	820	820	820	820	820	820	820	820	820
		P1	373	372	375	365	373	368	406	369	131
, 2004		Can #	368	296	399	379	284	332	102	367	286
s andfill 1, & 22		QI	wsl-061504-01	wsl-061504-02	wsl-061504-03	wsl-061504-04	wsl-061504-05	wsl-061504-06	wsl-061504-07	wsl-061504-08	wsl-061504-09
Client SCS Engineer. Site White Street L. Project #: 02203314.00 Report Date June 30, 2004 Date Received June 16, 2004 Date Analyzed June 17, 18, 2		Lab#	01684-6	01684-7	01684-8	01684-9	01684-10	01684-11	01684-12	01684-13	01684-14
		·	_	7	က	4	2	9		— Ж	6

D:\REPORT98\SCS_ENG\white st. 25c report

															(STDEV)				(STDEV)	The state of the s			Service Control	(STDEV)				The state of the s	(STDEV)			
															4.550				2.496	The state of the control of the state of the				26.207					3.335			
														RMD(%)	S Janes			0.203				0.113					1.096		33.01			0.073
														MD	3.217	3.217		3.217	1.765	1.765		1.765		18.531	18.531		18.531		2.358	2.358	-	2.358
													TGNMO	conc	1590	1584		1587	1555	1559		1557		1672	1709		1691		3222	3217		3220
sample ID co2 bkg	12616	12603	16119	17272	17205	12596	11646	10971	11262					area	131982	131499		(mean)	129345	129610		(mean)		141638	144420		(mean)		259130	258776		(mean)
sample ID	01684-6	01684-7	01684-8	01684-9	01684-10	01684-11	01684-12	01684-13	01684-14					Dil	20	20	20		20	20	20			20	20	20			20	20	20	
														P2	820				820					820					820			
						n2 bkg	5196		% Diff from	3 point calib	4.32	5.11		P1	373				372					375					365			
					22, 2004		ration				0.000695	0.0007		Can #	368				296					399					379			
SCS Engineers	White Street Landfill	02203314.00	June 30, 2004	June 16, 2004	June 17, 18, 21, &		rf from 6/02/04 3 pt calibration	0.0006661			230281	228588		#QI	wsl-061504-01				wsl-061504-02					wsl-061504-03					wsl-061504-04			
Client:	Site	Project #: (Report Date	Date Received ,	Date Analyzed ,		rf from		N ₂ BKG		initial std	end std		Lab#	01684-6				01684-7					01684-8					01684-9			

D:\REPORT98\SCS_ENG\white st. 25c report

(STDEV)	A PACE III P. A. A. PROMOTONIO II.				(SIDEV)			(STDEV)				(STDFW)	Section of the sectio			(STDEV)			
101.426				460 407	102.407			63.981	of probability and the second			64.066				16.787			
			2.133				3.377				2.828				2.327				3.471
71.719	71.719		71.719	444 006	114 896		114.896	45.242	45.242		45.242	45.301	45.301		45.301	11.870	11.870		11.870
3290	3433		3362	7000	3517		3402	1555	1645		1600	1902	1992		1947	354	330		342
264164	274931	= 11		250357	276606		(mean)	128335	135127		(mean)	153726	160527		(mean)	37826	36044		(mean)
20	20	20		00	200	20		20	20	20		20	20	20		20	20	20	٦
820				820	270			820				820				820			
373				368	3			406				369				131			
284				332				102				367				286		131	
wsl-061504-05				wsl-061504-06				wsl-061504-07				wsl-061504-08				wsl-061504-09		12)	
01684-10				01684-11				01684-12				01684-13				01684-14			

Vapor Pressure	of water	٩	20.09453541	22.98061623	22.22718936	24.55447787	24.55447787	23.75619728	26.22137213	27.0911299	29.85274083
Tank Temperature	before sampling	Ta	298	298	298	298	298	298	298	298	298
Tank Pressure	after evacuation	P	က	ю	က	က	m	8	က	က	m
Tank Temperature	after sampling	T_{ℓ}	298	298	298	298	298	298	298	298	298
Tank Pressure	after pressurization	P,	820	820	820	820	820	820	820	820	820
Tank Temperature	after pressurization	T _{tf}	298	298	298	298	298	298	298	298	298
	npling	P,	373	372	375	365	373	368	406	369	131
		Can #	368	296	399	379	284	332	102	367	286
		-	wsl-061504-01	wsl-061504-02	wsl-061504-03	wsl-061504-04	wsl-061504-05	wsl-061504-06	wsl-061504-07	wsl-061504-08	wsl-061504-09
		Lab#	01684-6	01684-7	01684-8	01684-9	01684-10	01684-11	01684-12	01684-13	01684-14

TGNMO	conc w/o	formula	3488.796			3432.101			3696.986			7233.241			7390.347			7581.091			3231.067			4326.852			2140.903		
		#0	wsl-061504-01			wsl-061504-02			wsl-061504-03			wsl-061504-04			wsl-061504-05			wsl-061504-06			wsl-061504-07			wsl-061504-08			wsl-061504-09		
		Lab#	01684-6			01684-7			01684-8			01684-9			01684-10			01684-11			01684-12			01684-13			01684-14		
Calculated	NMOC conc	౮	3993.173705			3936.897804			4209.99922			7696.085349			7824.516185			8003.716113			3432.59637			4731.476859			2406.798243		
Measured	NMOC conc	ů,	1590.2	1583.8	0.0	1555.2	1558.8	0.0	1672.2	1709.2	0.0	3222.0	3217.3	0.0	3290.0	3433.4	0.0	3287.4	3517.1	0.0	1554.5	1645.0	0.0	1901.8	1992.4	0.0	353.9	330.2	0
Measured	N ₂ Fraction	C _{N2}	0.085921995			0.083046858			0.077935297			0.011655494			0.007134199			0.005645643			0.008244733			0.033121794			0.040151345	:	
Number of	analysis	_	2			2			2			2			2			2			2			2			2		
Water	Correction	B _w	0.026239583			0.030008248			0.029024418			0.032063407			0.032063407			0.031021007			0.034240049			0.035375785			0.038981916		
Barometric	Pressure	P _b	765.81			765.81			765.81			765.81			765.81			765.81			765.81			765.81			765.81		

Duplicate Analyses Results (Without Method 25C formula)

Site	White Street Landfill		
Report Date			
Date Analyzed		2004	
Date Received		, 2001	
2410 110001100	00110 10, 2001		
AtmAA	Sample	Measured	
Lab #	ID#	conc (ppm)	
01684-6	wsl-061504-01	3496	Run #1
0.0010		3482	Run #2
			Run #3
			TKull #5
01684-7	wsl-061504-02	3428	Run #1
01004-1	W31-001004-02	3436	Run #2
		3430	Run #3
			Rull #3
01684-8	wsl-061504-03	3656	Run #1
01004-0	WSI-00 1304-03	3738	Run #2
		4	Run #3
01684-9	wsl-061504-04	7020	Run #1
01004-9	WSI-00 1504-04	7239	
		7228	Run #2
			Run #3
01684-10	wsl-061504-05	7000	D . #4
01004-10	WSI-00 1304-03	7233	Run #1
100		7548	Run #2
			Run #3
04004.44			5 "4
01684-11	wsl-061504-06	7325	Run #1
		7837	Run #2
			Run #3
04004.40	1001-010-		
01684-12	wsl-061504-07	3140	Run #1
		3322	Run #2
			Run #3
0.400.4.15			
01684-13	wsl-061504-08	4226	Run #1
		4428	Run #2
		900	Run #3
01684-14	wsl-061504-09	2215	Run #1
		2067	Run #2
			Run #3

Oxidation and Reduction Catalysts Efficiency Report

June 17, 18, 21, & 22, 2004 Catalyst Efficiencies for

TCA 2		Cr in	Cr in			
		Ni in	Ni out	(oxidation)	instrument	(reduction)
	std conc	response	response	Chromium	resp factor	Nickel
	(ppmv)			% efficiency	()	% efficiency)
CO	102	145109	0	100	0.0007029	98.1
CH4	97.9	141994	0	100.0	0.0006895	100.0
CO2	401	580862	0	100	0.0006904	99.9
TGNMO	156.4	230281	0	100.0	0.0006792	101.5
				•		

Oxidation and Reduction Catalysts Efficiency Report

	n Catalyst Efficiency ting TGNMO to CO ₂)	Reduction Catalyst Efficiency (Converting CO ₂ to CH ₄)
Lieuterent Bata I	(%)	(%)
Instrument Date TCA 2 7, 18, 21, & 22, 2004	100.0	100

TGNMO is total gaseous non- methane organics.

white st. 25c report

6/9/9004		-0 LI	0040		1000	<u> </u>					
6/2/2004		n2 bkg	6649	4898	4833	2000					
tca1	chart	00000		00		10					
	447400	cc86303		20x		10x		5x		2x	
co	147429		8839	5.1	16211		32662	20.4	76834		5′
ch4	145660		8376		15587		31614	19.58	75355		8.9
co2	597883		36914	20.05	67069	40.1	133998	80.2	311755		200.5
tgnmo	238767	156.4	16152	7.82	28031	15.64	57159	31.28	127210		78.2
c2	112214	80.4	6888	4.02	12107	8.04	24513	16.08	58539		40.2
		ff13841		2x							
co											
ch4		4.08		2.04							
co2											
tgnmo		3.12		1.56							
c2		3.66		1.83							
tgnmo		ch4									
0	0	0	0								
0		0	0								
0	0	0	0								
11319		8376	4.895								
26031	15.64	15587	9.79				****				
50510	31.28	31614	19.58								
120561	78.2	75355	48.95								
232118	156.4	145660	97.9								
140 - 140 - 140 - 100 -		y = 0.0006661 R ² = 0.999096	x 3		>	100 s	y = 0.00 R ² = 0.9		<i>,</i>		
60 - 40 - 20 -	5000	0 100000 res	150000 sponse	200000	250000	20	5000	00 100000 response	150000	200000	

Catalyst Check Cr in C C 86305 Ni out C C 86305

\$4/06/17 14:53:12 - 3.144

WARNING NO PEAK

04/06/17	15:08:42	-161	CC863	03.
			1:381	
			3.164	223-02037
				037-07
			6.765 7.691	

CHROMATOGRAM		RIZED					
KNO TIME	RRT	AREA	MK	I	DNO	CONC	NAME
1 1.281 2 1.709 3 3.164 4 6.765 5 7.691	1 1.334 2.4696 5.2794 6.0023		Н	R	1 2 3 4 4	100.8073 101.1283 365.32 159.3578 74.4352	CH4 CO2 TGNMO
	TOTAL	1205809				801.0486	

<u>√06</u>/17 15:22:09

Shimadin

CHROMA) PKNO	OGRAM Time	1	MEMORIZ AREA	ED MK	IDNO	CONC	NAME
1 2 3 4	3.11 6.407 7.285 7.408		1521 339 92 799		3 4 4 4	0.9567 0.2348 0.0634 0.5527	TGMMO TGMMO
	TOTAL		2751		-	1.8077	

94/96/17	15:33:06
3.11	
56.64787 7.72.94588	

N2 bkg.

PKN0	TIME	AREA	МK	IDNO	CONC	NAME
1 2 3 4 5	3.11 5.67 6.467 7.285 7.408	1521 3499 371 548 778	T T V	3 4 4 4 4	0.9567 2.4213 0.2566 0.3795 0.5385	TGNMO TGNMO TGNMO
	TOTAL	6717			4.5526	
					20144	

CHROMATOGRAM MEMORIZED

NAME

10.625 8.1629 4078 T 2.8249 TGNMO 11.567 8.8866 1830 T 1.2672 TGNMO 0.1437 TGNMO 191499 12.979 9.9713 12 463 V 0.3206 TGNMO 13 13.244 10.1746 349 ¥ 13.425 10.3134 207 _ _ _ _ TOTAL 27482524 18385.7246

11

14

W z_

CHROMAT	OGRAM	1 MEMORIZ	ED						
PKN0	TIME	RRT	AREA	MK	II	011	CONC	NAME	
1	1.234	1	384	Н	R	1	0.2666	CO	
2	2.99	2.4224	1604			3	1.0086	002	
3	5.749	4.6573	4748	S		4	3.2858	TGNMO	
4	5.947	4.8177	427	T		4	0.2952	TGNMO	
5	6.342	5.138	1506	TΥ		4	1.0422	TGNMO	
6	7.075	5.7318 .	1305	TΥ		4	0.9028	TGNMO	
7	7.323	5.9325	1418	TΥ		4	0.981	TGNMO	
8	7.57	6.1326	100	TV		4	0.0692	тбимф	
		TOTAL	11490				7.8514	/	
							5		

CHROMAT	OGRAM	1 MEMOR	IZED					
PKN0	TIME	RRT	AREA	MK	I	DNO	CONC	NAME
1	1.245	1	148742	Н	R	1	103.3309	CO
2	1.645	1.3213	145150	Н		2	103.3758	
3	2.021	1.623	321	٧				
4	3.023	2.4284	599616			3	377.1151	C02
5	6.751	5.4228	243811	S		4	168.7208	TGNMO
6	7.718	6.1995	111468	T		4	77.096	TGNMO
		TOTAL	1249048				829.6385	
				_		talia		

1.95/we bkg - - 127

-12 ×20

*	,	_ 84×86 √21	15:54:34	·	
	=	> 11.43589			1.735
	,	0.065			⊕ Shancocirsa
		\$:283	9 935 10.554	183	
CHROMATOG PKNO	RAM 1 TIME	MEMORIZED RRT AREA	MK IDNO	CONC NAMI	Ξ
2 3 4 5 6 7 8 9 1 10 1	1.735 3.049 8.065 8.393 8.805 9.205 9.295 0.183 8.554	1 413 1.3569 13672371 2.3848 15302566 6.3074 127 6.5639 1695 6.8861 429 7.1989 523 7.8165 14242 7.9638 108851 8.2536 3984 9.0516 1258	T 4 V 4 V 4 V 4 V 4 V 4 T 4 V 4 T 4 V 4 V	8.2872 CO 9735.2197 CH4 9623.9355 CO2 6.0877 TGNMG 1.1738 TGNMG 0.2969 TGNMG 0.3624 TGNMG 9.865 TGNMG 75.3959 TGNMG 2.7595 TGNMG	128335
		TOTAL 29186444		19450.2441	20)
ĸ	_ । न	94×96×21 - 1,999	16:12:20	12-	1.69
9		5.185 5.35 8.844 9.058	10.002 100	3.97	2.86
CHROMATOGI PKNO	RAM 1 TIME	MEMORIZED RRT AREA	MK IDNO	CONC NAME	
1 2 3 4	1.27 1.69 2.86 5.185	1 494 1.3307 13600283 2.2522 15295779 4.0827 1923	V R 1 VE 2 SVE 3	0.3432 CO 9683.8906 CH4 9619.6669 CO2 1.2093 CO2 0.1985 TGNMO	135 223.0
7 16 8 16 9 16 10 16 11 12	9.337 8 9.552 8 9.675 8 2.951 16	8.0294 19440 8.1394 99625 8.3087 553 8.4052 1247	SV 4 T 4	9.6638 TGNM0 13.4648 TGNM0 69.0055 TGNM0 0.3832 TGNM0 0.8636 TGNM0 0.1373 TGNM0 0.0799 TGNM0) ()) (°°7

APPENDIX F LAEEM TIER 2 MODEL OUTPUTS

TABLE 1. PROJECTED LFG AND NMOC GENERATION RATES (675 ppm) Phase II, White Street Landfill - Greensboro, North Carolina

Part						Methane			NMOC	NMOC
Year (tons/yr) (tons) (Mg/yr) (Mg) (m³/yr) (cfm) (Million ft²/yr) (tons/yr) 1978 240,000 0 217,724 0 0.000E+00 0 0 0 0 1980 240,000 480,000 217,724 435,449 3.611E+06 485 255 19 1981 240,000 720,000 217,724 435,449 3.611E+06 485 255 19 1982 240,000 720,000 217,724 435,449 3.611E+06 485 255 19 1983 240,000 960,000 217,724 870,897 6.878E+06 710 373 28 1983 240,000 1,200,000 217,724 1,088,622 8.394E+06 1,128 593 44 1984 240,000 1,400,000 217,724 1,088,622 8.394E+06 1,128 593 44 1985 229,000 1,680,000 216,817 1,524,070 1.121E+07 1,506 791 59 1986 262,000 1,919,000 237,682 1,740,888 1,250E+07 1,680 883 66 1987 292,000 2,181,000 264,898 1,978,570 1,391E+07 1,870 983 73 1989 342,000 2,817,000 310,272 2,243,468 1,49E+07 2,336 1,228 91 1999 340,000 3,189,000 300,273 3,174,239 2,066E+07 2,336 1,228 91 1999 340,000 3,189,000 300,273 3,174,239 2,066E+07 2,803 1,473 109 1992 292,000 3,830,000 264,898 3,474,518 2,239E+07 3,009 1,582 117 1999 240,746 4,358,292 218,401 3,953,776 2,423E+07 3,346 1,759 131 1999 240,746 4,358,292 218,401 3,953,776 2,423E+07 3,356 1,711 127 1999 240,746 4,358,292 218,401 3,953,776 2,423E+07 3,356 1,711 127 1999 240,746 4,358,393 0 4,912,977 2,48E+07 3,356 1,731 1,668 124 1999 0 5,415,630 0 4,912,977 2,48E+07 3,356 1,731 1,668 124 1999 0 5,415,630 0 4,912,977 2,48E+07 3,356 1,735 1,351 100 1991 0 5,415,630 0 4,912,977 1,50E+07 2,236 1,175 87 2000 0 5,415,630 0 4,912,977 1,50E+07 2,236 1,175 87 2001 0 5,415,630 0 4,912,977 1,50E+07 2,236 1,175 87 2011 0 5,415,630 0 4,912,977 1,50E+07 2,236 1,175 87 2012 0 5,415,630 0 4,91]]		Refuse	Disposal	Refuse	Generation	LFG		Generation	Generation
1978 240,000 0 217,724 0 0.000E+00 0 0 0 0 1979 240,000 240,000 217,724 217,724 1.851E+06 249 131 10 1980 240,000 480,000 217,724 435,449 3.611E+06 485 255 19 1981 240,000 720,000 217,724 453,449 3.611E+06 485 255 19 1981 240,000 720,000 217,724 633,173 5.286E+06 710 373 28 1982 240,000 560,000 217,724 870,897 6.878E+06 924 486 36 6878E+06 924 92		Rate	<u>In-Place</u>	Rate	In-Place				Rates	Rates
1979	ear ((tons/yr)	(tons)	(Mg/yr)	(Mg)		(cfm)	(Million ft ³ /yr)	(tons/yr)	(Mg/yr)
1980 240,000 480,000 217,724 435,449 3.611E+06 485 255 19 1981 240,000 720,000 217,724 653,173 5.286E+06 710 373 28 1982 240,000 960,000 217,724 870,877 6.878E+06 924 486 36 36 383 240,000 1,200,000 217,724 1,088,622 8.394E+06 1,128 593 44 44 440,000 1,440,000 217,724 1,088,622 8.394E+06 1,128 593 44 486 36 36 38 38 38 38 39 38 39 38 38	978 2	240,000	0	217,724	0	0.000E+00	0	0	0	0
1981 240,000 720,000 217,724 653,173 5.286E+06 710 373 28 1982 240,000 960,000 217,724 1,088,622 8.378E+06 924 486 36 36 1983 240,000 1,200,000 217,724 1,088,622 8.394E+06 1,128 593 44 1984 240,000 1,440,000 217,724 1,306,346 9.835E+06 1,322 695 52 52 1986 239,000 1,680,000 216,817 1,524,070 1.121E+07 1,506 791 59 1985 239,000 1,680,000 216,817 1,524,070 1.121E+07 1,506 791 59 1986 262,000 1,919,000 237,682 1,740,888 1250E+07 1,680 883 66 1987 292,000 2,417,000 312,072 2,243,468 1.549E+07 2,081 1,094 81 1989 342,000 2,417,000 310,257 2,555,539 1,738E+07 2,336 1,228 91 1999 340,000 3,159,000 308,443 2,865,797 1,917E+07 2,576 1,354 101 1991 331,000 3,499,000 300,278 3,174,239 2,086E+07 2,803 1,473 109 1992 292,000 3,830,000 264,898 3,474,239 2,086E+07 2,803 1,473 109 1992 292,000 3,830,000 264,898 3,474,239 2,086E+07 3,009 1,582 117 1994 240,746 4,358,292 218,401 3,953,776 2,423E+07 3,165 1,664 124 1994 240,746 4,358,292 218,401 3,953,776 2,423E+07 3,346 1,759 131 1996 290,370 4,856,445 263,419 4,405,693 2,567E+07 3,436 1,759 131 1998 0 5,415,630 0 4,912,977 2,743E+07 3,686 1,938 144 1999 0 5,415,630 0 4,912,977 2,743E+07 3,686 1,938 144 1999 0 5,415,630 0 4,912,977 2,743E+07 3,165 1,668 124 2000 0 5,415,630 0 4,912,977 2,248E+07 3,136 1,753 130 2001 0 5,415,630 0 4,912,977 2,248E+07 3,136 1,753 130 2001 0 5,415,630 0 4,912,977 2,248E+07 3,136 1,753 130 2001 0 5,415,630 0 4,912,977 2,136E+07 3,136 1,753 130 2001 0 5,415,630 0 4,912,977 1,338E+07 2,247 1,1299 96 200,440 0 5,415,630 0 4,912,977 1,338E+07 2,247 1,1299 96 200,540 0 5,415,630 0 4,912,977 1,338E+07 2,236 1,175 87 2000 0 5,41	979 2	240,000	240,000	217,724	217,724	1.851E+06	249	131		9
1982 240,000 960,000 217,724 870,897 6.878E+06 924 486 36 1983 240,000 1,240,000 217,724 1,308,622 8.394E+06 1,322 695 52 1985 229,000 1,440,000 216,817 1,524,070 1.121E+07 1,506 791 59 1986 262,000 1,919,000 237,682 1,740,888 1.250E+07 1,680 883 66 1987 292,000 2,181,000 264,898 1,978,570 1.391E+07 1,870 983 73 1988 344,000 2,473,000 312,072 2,243,468 1.549E+07 2,081 1,094 81 1990 344,000 3,159,000 308,443 2,865,797 1.917E+07 2,576 1,354 101 1991 331,000 3,499,000 300,478 3,174,239 2.086E+07 2,263 3,174,30 1,473 109 1992 292,000 3,830,000 264,898 3,474,518 2.239E+07 3,009 1,582 117 1993 236,292 4,122,000 214,360 3,793,416 2.355E+07 3,366 1,711 127 1995 257,407 4,599,038 233,516 4,172,177 2.490E+07 3,346 1,759 131 1996 290,370 4,856,445 263,419 4,405,693 2.567E+07 3,566 1,711 127 1995 257,407 4,599,038 233,516 4,172,177 2.490E+07 3,586 1,759 131 1996 290,370 4,856,445 263,419 4,405,693 2.567E+07 3,550 1,883 144 1999 0 5,415,630 0 4,912,977 2.482E+07 3,686 1,753 130 130 1996 290,370 4,856,445 263,419 4,405,693 2.567E+07 3,550 1,883 144 1999 0 5,415,630 0 4,912,977 2.482E+07 3,566 1,753 130 130 1996 290,370 4,856,445 263,419 4,405,693 2.567E+07 3,550 1,883 144 1999 0 5,415,630 0 4,912,977 2.482E+07 3,566 1,753 130 13	980 2	240,000	480,000	217,724	435,449	3.611E+06	485	255		17
1983 240,000 1,200,000 217,724 1,088,622 8.394E+06 1,128 593 44 1984 240,000 1,440,000 217,724 1,306,346 9.835E+06 1,322 695 52 1985 239,000 1,680,000 216,817 1,524,070 1.121E+07 1,506 791 59 1986 262,000 1,919,000 237,682 1,740,888 1250E+07 1,680 883 66 1987 292,000 2,817,000 264,898 1,978,570 1.391E+07 1,870 983 73 1988 344,000 2,473,000 310,257 2,555,539 1,738E+07 2,336 1,228 91 1989 342,000 2,817,000 310,257 2,555,539 1,738E+07 2,336 1,228 91 1990 340,000 3,159,000 308,443 2,865,797 1,917E+07 2,576 1,354 101 1991 331,000 3,499,000 300,278 3,174,239 2.086E+07 2,803 1,473 109 1992 292,000 3,830,000 264,898 3,474,518 2.239E+07 3,009 1,582 117 1993 236,5292 4,122,000 214,360 3,739,416 2.355E+07 3,165 1,664 124 1994 240,746 4,358,292 218,401 3,953,776 2,423E+07 3,256 1,711 127 1995 257,407 4,559,038 233,516 4,172,177 2,490E+07 3,346 1,759 131 1997 268,815 5,146,815 243,865 4,669,112 2.666E+07 3,363 1,813 135 1997 268,815 5,146,815 243,865 4,669,112 2.666E+07 3,368 1,938 144 1999 0 5,415,630 0 4,912,977 2,743E+07 3,686 1,938 144 1999 0 5,415,630 0 4,912,977 2,269E+07 3,366 1,938 144 1999 0 5,415,630 0 4,912,977 2,249E+07 3,366 1,938 144 1999 0 5,415,630 0 4,912,977 2,269E+07 3,166 124 2000 0 5,415,630 0 4,912,977 2,269E+07 3,173 1,668 124 2000 0 5,415,630 0 4,912,977 2,13EE+07 3,168 1,188 1,188 1,188 118 2003 0 5,415,630 0 4,912,977 1,13E+07 2,273 1,1435 107 2006 0 5,415,630 0 4,912,977 1,13E+07 2,273 1,1435 107 2006 0 5,415,630 0 4,912,977 1,13E+07 2,273 1,1435 107 2007 0 5,415,630 0 4,912,977 1,13E+07 2,273 1,188 36 2010 0 5,415,630 0 4,912,977 1,15E	981 2	240,000	720,000	217,724	653,173	5.286E+06	710	373	28	25
1984 240,000 1,440,000 217,724 1,306,346 9.835E+06 1,322 695 52 1985 239,000 1,680,000 216,817 1,524,070 1,21E+07 1,506 791 59 1986 262,000 1,919,000 237,682 1,740,888 1.250E+07 1,680 883 66 1987 292,000 2,181,000 264,898 1,978,570 1,391E+07 1,870 983 73 1988 344,000 2,473,000 312,072 2,243,468 1.459E+07 2,081 1,094 81 1989 342,000 2,817,000 310,257 2,555,539 1,738E+07 2,336 1,228 91 1990 340,000 3,159,000 300,278 3,174,297 1,917E+07 2,576 1,354 101 1991 331,000 3,499,000 300,278 3,174,297 2,086E+07 2,803 1,473 109 1992 292,000 3,830,000 264,898 3,474,518 2,239E+07 3,009 1,582 117 1993 236,292 4,122,000 214,360 3,739,416 2,355E+07 3,165 1,664 1,24 1994 240,746 4,358,292 218,401 3,953,776 2,432E+07 3,255 1,711 127 1995 257,407 4,599,038 233,516 4,172,177 2,490E+07 3,346 1,759 131 1996 290,370 4,856,445 263,419 4,405,693 2,567E+07 3,450 1,813 135 1997 268,815 5,146,815 243,865 4,669,112 2,666E+07 3,582 1,883 140 1998 0 5,415,630 0 4,912,977 2,609E+07 3,366 1,938 144 1999 0 5,415,630 0 4,912,977 2,609E+07 3,366 1,938 144 1999 0 5,415,630 0 4,912,977 2,609E+07 3,308 1,753 130 2000 0 5,415,630 0 4,912,977 2,246E+07 3,368 1,733 130 2000 0 5,415,630 0 4,912,977 2,246E+07 3,318 1,586 118 2003 0 5,415,630 0 4,912,977 2,246E+07 3,135 1,566 118 2005 0 5,415,630 0 4,912,977 2,246E+07 3,135 1,566 118 2005 0 5,415,630 0 4,912,977 1,933E+07 2,2731 1,495 107 2,200 0 5,415,630 0 4,912,977 1,933E+07 2,235 1,355 1,355 101 2006 0 5,415,630 0 4,912,977 1,933E+07 2,235 1,355 1,355 101 2006 0 5,415,630 0 4,912,977 1,933E+07 2,235 1,355 1,355 101 2006 0 5,415,630 0 4,912,977 1,174E+07 1,576 828 61 2010 0 5,415,63	982 2	240,000	960,000	217,724	870,897	6.878E+06	924	486	36	33
1985 239,000	983 2	240,000	1,200,000	217,724	1,088,622	8.394E+06	1,128	593	44	40
1986 262,000 1,919,000 237,682 1,740,888 1,250E+07 1,680 883 66 1987 292,000 2,181,000 264,898 1,978,570 1,391E+07 1,870 983 73 1988 344,000 2,473,000 312,072 2,243,468 1,549E+07 2,081 1,094 81 1989 342,000 2,817,000 310,257 2,555,539 1,738E+07 2,336 1,228 91 1990 340,000 3,159,000 308,443 2,865,797 1,917E+07 2,576 1,354 101 1991 331,000 3,499,000 300,278 3,174,239 2,086E+07 2,803 1,473 109 1992 292,000 3,830,000 264,898 3,474,518 2,239E+07 3,009 1,582 117 1993 236,292 4,122,000 214,360 3,739,416 2,355E+07 3,165 1,664 124 1994 240,746 4,358,292 218,401 3,953,776 2,423E+07 3,256 1,711 127 1995 257,407 4,599,038 233,516 4,172,177 2,490E+07 3,346 1,759 131 1996 290,370 4,856,445 263,419 4,405,693 2.56TE+07 3,450 1,813 135 1997 268,815 5,146,815 243,865 4,669,112 2.666E+07 3,582 1,883 140 1998 0 5,415,630 0 4,912,977 2.743E+07 3,686 1,938 144 1999 0 5,415,630 0 4,912,977 2.482E+07 3,336 1,753 130 2001 0 5,415,630 0 4,912,977 2.246E+07 3,173 1,668 124 2002 0 5,415,630 0 4,912,977 2.246E+07 3,173 1,668 124 2003 0 5,415,630 0 4,912,977 2.246E+07 3,173 1,668 124 2004 0 5,415,630 0 4,912,977 2.361E+07 2,371 1,355 107 2006 0 5,415,630 0 4,912,977 2.36E+07 2,371 1,355 107 2007 0 5,415,630 0 4,912,977 2.36E+07 2,371 1,355 107 2008 0 5,415,630 0 4,912,977 1.36E+07 2,371 1,355 107 2009 0 5,415,630 0 4,912,977 1.36E+07 2,371 1,355 107 2001 0 5,415,630 0 4,912,977 1.36E+07 2,359 1,355 92 2007 0 5,415,630 0 4,912,977 1.50E+07 2,236 1,756 828 61 2010 0 5,415,630 0 4,912,977 1.50E+07 1,351 962 71 2011 0 5,415,630 0 4,912,977	984 2	240,000	1,440,000	217,724	1,306,346	9.835E+06	1,322	695	52	47
1987 292,000 2,181,000 264,898 1,78,570 1,391E+07 1,870 983 73 1988 344,000 2,473,000 312,072 2,243,468 1,549E+07 2,081 1,094 81 1989 342,000 2,817,000 310,257 2,555,399 1,738E+07 2,336 1,228 91 1990 340,000 3,159,000 308,443 2,865,797 1,917E+07 2,576 1,354 101 1991 331,000 3,499,000 300,278 3,174,239 2.086E+07 2,803 1,473 109 1992 292,000 3,830,000 264,898 3,474,518 2,239E+07 3,009 1,582 117 1993 236,292 4,122,000 214,360 3,739,416 2,355E+07 3,165 1,664 124 1994 240,746 4,358,292 218,401 3,953,776 2,423E+07 3,256 1,711 127 1995 257,407 4,856,445 263,419 4,405,693 2.567E+07 3,450 1,813 135 1996 290,370 4,856,445 263,419 4,405,693 2.567E+07 3,450 1,813 135 1996 290,370 4,856,445 263,419 4,405,693 2.567E+07 3,450 1,813 135 1998 0 5,415,630 0 4,912,977 2,743E+07 3,686 1,938 144 1999 0 5,415,630 0 4,912,977 2,743E+07 3,686 1,938 144 1999 0 5,415,630 0 4,912,977 2,469E+07 3,336 1,753 130 2001 0 5,415,630 0 4,912,977 2,469E+07 3,336 1,753 130 2001 0 5,415,630 0 4,912,977 2,246E+07 3,173 1,668 124 2002 0 5,415,630 0 4,912,977 2,246E+07 3,173 1,668 124 2002 0 5,415,630 0 4,912,977 2,246E+07 3,173 1,668 124 2002 0 5,415,630 0 4,912,977 2,246E+07 3,173 1,435 107 2006 0 5,415,630 0 4,912,977 1,332E+07 2,731 1,435 107 2006 0 5,415,630 0 4,912,977 1,332E+07 2,731 1,435 107 2006 0 5,415,630 0 4,912,977 1,332E+07 2,731 1,435 107 2006 0 5,415,630 0 4,912,977 1,332E+07 2,731 1,435 107 2006 0 5,415,630 0 4,912,977 1,332E+07 2,731 1,435 107 2006 0 5,415,630 0 4,912,977 1,332E+07 2,731 1,435 107 2010 0 5,415,630 0 4,912,977 1,506E+07 2,236 1,175 87 2010 0 5,415,630 0 4,912,977 1,506E+07 2,236 1,175 88 58 2010 0	985 2	239,000	1,680,000	216,817	1,524,070	1.121E+07	1,506	791	59	53
1988 344,000 2,473,000 312,072 2,243,468 1,549E+07 2,081 1,094 81 1989 342,000 2,817,000 310,257 2,555,539 1.738E+07 2,336 1,228 91 1990 340,000 3,159,000 308,443 2,865,797 1,917E+07 2,576 1,354 101 1991 331,000 3,499,000 300,278 3,174,239 2,086E+07 2,803 1,473 109 1992 292,000 3,830,000 264,898 3,474,518 2,239E+07 3,009 1,582 117 1993 236,292 4,122,000 214,360 3,739,416 2,355E+07 3,165 1,664 124 1994 240,746 4,358,292 218,401 3,953,776 2,423E+07 3,256 1,711 127 1995 257,407 4,599,038 233,516 4,172,177 2,490E+07 3,346 1,759 131 1996 290,370 4,856,445 263,419 4,405,693 2.567E+07 3,450 1,813 135 1997 268,815 5,146,815 243,865 4,669,112 2,666E+07 3,582 1,883 140 1998 0 5,415,630 0 4,912,977 2,743E+07 3,686 1,938 144 1999 0 5,415,630 0 4,912,977 2,492E+07 3,336 1,753 130 2001 0 5,415,630 0 4,912,977 2,482E+07 3,336 1,753 130 2001 0 5,415,630 0 4,912,977 2,246E+07 3,173 1,668 124 2002 0 5,415,630 0 4,912,977 2,246E+07 3,173 1,668 124 2002 0 5,415,630 0 4,912,977 2,246E+07 3,173 1,668 124 2002 0 5,415,630 0 4,912,977 2,246E+07 3,185 118 2003 0 5,415,630 0 4,912,977 2,246E+07 3,173 1,435 107 2005 0 5,415,630 0 4,912,977 2,36E+07 2,371 1,435 107 2005 0 5,415,630 0 4,912,977 2,36E+07 2,371 1,435 107 2005 0 5,415,630 0 4,912,977 1,33E+07 2,471 1,299 96 2007 0 5,415,630 0 4,912,977 1,33E+07 2,471 1,299 96 2007 0 5,415,630 0 4,912,977 1,36E+07 2,471 1,299 96 2007 0 5,415,630 0 4,912,977 1,36E+07 2,471 1,299 96 2007 0 5,415,630 0 4,912,977 1,36E+07 1,741 1,99 96 2010 0 5,415,630 0 4,912,977 1,36E+07 1,941 1,99 788 58 2010 0 5,415,630 0 4,912,977 1,36E+0		262,000	1,919,000	237,682			1,680			59
1989 342,000 2,817,000 310,257 2,555,339 1.738E+07 2,336 1,228 91 1990 340,000 31,59,000 308,443 2,865,797 1.917E+07 2,576 1,354 101 1991 331,000 3,499,000 300,278 3,174,239 2.086E+07 2,803 1,473 109 1992 292,000 3,830,000 264,898 3,474,518 2.239E+07 3,009 1,582 117 1993 236,292 4,122,000 214,360 3,739,416 2.355E+07 3,165 1,664 124 1994 240,746 4,358,292 218,401 3,953,776 2.423E+07 3,256 1,711 127 1995 257,407 4,599,038 233,516 4,172,177 2.490E+07 3,346 1,759 131 1996 290,370 4,856,445 263,419 4,405,693 2.567E+07 3,450 1,813 135 1997 268,815 5,146,815 243,865 4,669,112 2.666E+07 3,450 1,813 135 1998 0 5,415,630 0 4,912,977 2.743E+07 3,686 1,938 144 1999 0 5,415,630 0 4,912,977 2.609E+07 3,507 1,843 137 2000 0 5,415,630 0 4,912,977 2.482E+07 3,336 1,753 130 2001 0 5,415,630 0 4,912,977 2.361E+07 3,173 1,668 124 2002 0 5,415,630 0 4,912,977 2.361E+07 3,173 1,668 124 2002 0 5,415,630 0 4,912,977 2.361E+07 3,173 1,668 124 2003 0 5,415,630 0 4,912,977 2.361E+07 3,173 1,668 124 2004 0 5,415,630 0 4,912,977 2.361E+07 3,173 1,668 118 2005 0 5,415,630 0 4,912,977 2.362E+07 2,731 1,435 107 2006 0 5,415,630 0 4,912,977 1.365E+07 2,731 1,435 107 2007 0 5,415,630 0 4,912,977 1.362E+07 2,731 1,435 107 2008 0 5,415,630 0 4,912,977 1.362E+07 2,731 1,435 107 2009 0 5,415,630 0 4,912,977 1.362E+07 1,741 1,299 96 2008 0 5,415,630 0 4,912,977 1.362E+07 1,741 1,299 96 2011 0 5,415,630 0 4,912,977 1.362E+07 1,741 1,299 96 2011 0 5,415,630 0 4,912,977 1.362E+07 1,741 1,299 78 2010 0 5,415,630 0 4,912,977 1.362E+07 1,741 1,749			2,181,000		1,978,570		1,870			66
1990 340,000 3,159,000 308,443 2,865,797 1,917E+07 2,576 1,354 101 1991 331,000 3,499,000 300,278 3,174,239 2.086E+07 2,803 1,473 109 1992 292,000 3,830,000 264,898 3,474,518 2.239E+07 3,009 1,582 117 1993 236,292 4,122,000 214,360 3,739,416 2.355E+07 3,165 1,664 124 1994 240,746 4,358,292 218,401 3,953,776 2.423E+07 3,256 1,711 127 1995 257,407 4,599,038 233,516 4,172,177 2.490E+07 3,256 1,711 127 1996 290,370 4,856,445 263,419 4,405,693 2.567E+07 3,450 1,813 135 1997 268,815 5,146,815 243,865 4,669,112 2.666E+07 3,582 1,883 140 1998 0 5,415,630 0 4,912,977 2.696E+07 3,586 1,938 144 1999 0 5,415,630 0 4,912,977 2.696E+07 3,336 1,733 137 2000 0 5,415,630 0 4,912,977 2.482E+07 3,336 1,733 130 2001 0 5,415,630 0 4,912,977 2.482E+07 3,336 1,753 130 2001 0 5,415,630 0 4,912,977 2.246E+07 3,018 1,586 118 2002 0 5,415,630 0 4,912,977 2.246E+07 3,018 1,586 118 2003 0 5,415,630 0 4,912,977 2.36E+07 2,731 1,435 107 2004 0 5,415,630 0 4,912,977 2.36E+07 2,731 1,435 107 2005 0 5,415,630 0 4,912,977 1.933E+07 2,598 1,365 101 2006 0 5,415,630 0 4,912,977 1.339E+07 2,236 1,175 87 2009 0 5,415,630 0 4,912,977 1.339E+07 2,236 1,175 87 2009 0 5,415,630 0 4,912,977 1.339E+07 2,236 1,175 87 2009 0 5,415,630 0 4,912,977 1.339E+07 2,236 1,175 87 2009 0 5,415,630 0 4,912,977 1.339E+07 2,236 1,175 87 2010 0 5,415,630 0 4,912,977 1.339E+07 1,924 1,011 75 2011 0 5,415,630 0 4,912,977 1.329E+07 1,924 1,011 75 2012 0 5,415,630 0 4,912,977 1.329E+07 1,924 1,011 75 2013 0 5,415,630 0 4,912,977 1.329E+07 1,924 1,011 75 2014 0		344,000	2,473,000	312,072	2,243,468	1.549E+07	2,081	1,094	81	74
1991 331,000 3,499,000 300,278 3,174,239 2.086E+07 2,803 1,473 109 1992 292,000 3,830,000 264,898 3,474,518 2.239E+07 3,009 1,582 117 1193 236,292 4,122,000 214,360 3,739,416 2.355E+07 3,165 1,664 124 1994 240,746 4,358,292 218,401 3,953,776 2.423E+07 3,256 1,711 127 1995 257,407 4,599,038 233,516 4,172,177 2.490E+07 3,346 1,759 131 1996 290,370 4,856,445 263,419 4,405,693 2.567E+07 3,450 1,813 135 1997 268,815 5,146,815 243,865 4,669,112 2.666E+07 3,582 1,883 140 1998 0 5,415,630 0 4,912,977 2.743E+07 3,086 1,938 144 1999 0 5,415,630 0 4,912,977 2.609E+07 3,536 1,753 130 2001 0 5,415,630 0 4,912,977 2.361E+07 3,336 1,753 130 2001 0 5,415,630 0 4,912,977 2.361E+07 3,173 1,668 124 2002 0 5,415,630 0 4,912,977 2.361E+07 3,018 1,586 118 2003 0 5,415,630 0 4,912,977 2.246E+07 3,018 1,586 118 2003 0 5,415,630 0 4,912,977 2.246E+07 3,018 1,586 118 2004 0 5,415,630 0 4,912,977 2.236E+07 2,731 1,435 107 2006 0 5,415,630 0 4,912,977 2.032E+07 2,731 1,435 107 2006 0 5,415,630 0 4,912,977 1.332E+07 2,271 1,509 112 2004 0 5,415,630 0 4,912,977 1.332E+07 2,271 1,299 96 2007 0 5,415,630 0 4,912,977 1.332E+07 2,230 1,235 92 2008 0 5,415,630 0 4,912,977 1.506E+07 2,230 1,235 92 2008 0 5,415,630 0 4,912,977 1.506E+07 2,230 1,063 79 2011 0 5,415,630 0 4,912,977 1.506E+07 2,236 1,175 87 2012 0 5,415,630 0 4,912,977 1.506E+07 2,236 1,175 87 2014 0 5,415,630 0 4,912,977 1.506E+07 2,236 1,175 87 2014 0 5,415,630 0 4,912,977 1.506E+07 2,236 1,175 88 58 2010 0 5,415,630 0 4,912,977 1.506E+07 1,924 1,011 75 68 2014 0 5,415,630 0 4,912,977 1.506E+07 1,576 82					2,555,539		2,336	1,228	91	83
1992 292,000 3,830,000 264,898 3,474,518 2.239E+07 3,009 1,582 117 1993 236,292 4,122,000 214,360 3,739,416 2.355E+07 3,165 1,664 124 1994 240,746 4,358,292 218,401 3,953,776 2.423E+07 3,256 1,711 127 1995 257,407 4,599,038 233,516 4,172,177 2.490E+07 3,346 1,759 131 1996 290,370 4,836,445 263,419 4,405,693 2.567E+07 3,480 1,813 135 1997 268,815 5,146,815 243,865 4,669,112 2.666E+07 3,582 1,883 140 1998 0 5,415,630 0 4,912,977 2.743E+07 3,686 1,938 144 1999 0 5,415,630 0 4,912,977 2.609E+07 3,507 1,843 137 2000 0 5,415,630 0 4,912,977 2.462E+07 3,336 1,753 130 2001 0 5,415,630 0 4,912,977 2.361E+07 3,018 1,586 118 2003 0 5,415,630 0 4,912,977 2.246E+07 3,018 1,586 118 2003 0 5,415,630 0 4,912,977 2.136E+07 2,871 1,509 112 2004 0 5,415,630 0 4,912,977 2.136E+07 2,731 1,435 107 2005 0 5,415,630 0 4,912,977 2.136E+07 2,731 1,435 107 2006 0 5,415,630 0 4,912,977 1.339E+07 2,731 1,435 107 2006 0 5,415,630 0 4,912,977 1.339E+07 2,731 1,435 107 2006 0 5,415,630 0 4,912,977 1.339E+07 2,731 1,435 107 2007 0 5,415,630 0 4,912,977 1.339E+07 2,731 1,435 107 2008 0 5,415,630 0 4,912,977 1.596E+07 2,236 1,175 87 2009 0 5,415,630 0 4,912,977 1.596E+07 2,023 1,063 79 2010 0 5,415,630 0 4,912,977 1.596E+07 1,741 1,299 96 2007 0 5,415,630 0 4,912,977 1.596E+07 1,741 1,299 96 2007 0 5,415,630 0 4,912,977 1.596E+07 1,741 1,188 83 2010 0 5,415,630 0 4,912,977 1.596E+07 1,741 1,75 65 2011 0 5,415,630 0 4,912,977 1.596E+07 1,741 1,75 65 2012 0 5,415,630 0 4,912,977 1.596E+07 1,741 1,915 68 2014 0 5,415,630 0 4,912										91
1993 236,292 4,122,000 214,360 3,739,416 2.355E+07 3,165 1,664 124 1994 240,746 4,358,292 218,401 3,953,776 2.423E+07 3,256 1,711 127 1995 257,407 4,599,038 233,516 4,172,177 2.490E+07 3,346 1,759 131 1996 290,370 4,856,445 263,419 4,405,693 2.567E+07 3,450 1,813 135 1997 268,815 5,146,815 243,865 4,669,112 2.666E+07 3,582 1,883 140 1998 0 5,415,630 0 4,912,977 2.743E+07 3,507 1,843 137 2000 0 5,415,630 0 4,912,977 2.699E+07 3,507 1,843 137 2000 0 5,415,630 0 4,912,977 2.482E+07 3,336 1,753 130 2001 0 5,415,630 0 4,912,977 2.248E+07 3,018 1,586 118 2003 0 5,415,630 0 4,912,977 2.136E+07 3,018 1,586 118 2003 0 5,415,630 0 4,912,977 2.136E+07 2,731 1,509 112 2004 0 5,415,630 0 4,912,977 2.02E+07 2,731 1,435 107 2005 0 5,415,630 0 4,912,977 1.933E+07 2,731 1,435 107 2005 0 5,415,630 0 4,912,977 1.933E+07 2,731 1,435 107 2006 0 5,415,630 0 4,912,977 1.839E+07 2,471 1,299 96 2007 0 5,415,630 0 4,912,977 1.749E+07 2,350 1,235 92 2008 0 5,415,630 0 4,912,977 1.566E+07 2,236 1,175 87 2009 0 5,415,630 0 4,912,977 1.566E+07 2,236 1,175 87 2000 0 5,415,630 0 4,912,977 1.566E+07 2,023 1,063 79 2011 0 5,415,630 0 4,912,977 1.566E+07 1,924 1,011 75 2012 0 5,415,630 0 4,912,977 1.32E+07 1,934 1,011 75 2014 0 5,415,630 0 4,912,977 1.32E+07 1,934 1,011 75 2015 0 5,415,630 0 4,912,977 1.32E+07 1,934 1,011 75 2011 0 5,415,630 0 4,912,977 1.32E+07 1,576 828 61 2014 0 5,415,630 0 4,912,977 1.00E+07 1,576 828 61 2015 0 5,415,630 0 4,912,977 1.00E+07 1,426 749 56 2018 0 5,415,630 0 4,912,977 1.00E+07 1,426 7										99
1994 240,746										107
1995					 			* 		112
1996 290,370										115
1997 268,815 5,146,815 243,865 4,669,112 2.666E+07 3,582 1,883 140 1998 0 5,415,630 0 4,912,977 2.743E+07 3,686 1,938 144 1999 0 5,415,630 0 4,912,977 2.609E+07 3,507 1,843 137 2000 0 5,415,630 0 4,912,977 2.482E+07 3,336 1,753 130 2001 0 5,415,630 0 4,912,977 2.482E+07 3,336 1,753 130 2002 0 5,415,630 0 4,912,977 2.246E+07 3,018 1,586 118 2003 0 5,415,630 0 4,912,977 2.136E+07 2,871 1,509 112 2004 0 5,415,630 0 4,912,977 2.032E+07 2,731 1,435 107 2005 0 5,415,630 0 4,912,977 2.032E+07 2,731 1,435 107 2006 0 5,415,630 0 4,912,977 1.33E+07 2,598 1,365 101 2006 0 5,415,630 0 4,912,977 1.393E+07 2,471 1,299 96 2007 0 5,415,630 0 4,912,977 1.749E+07 2,350 1,235 92 2008 0 5,415,630 0 4,912,977 1.583E+07 2,212 1,118 83 2010 0 5,415,630 0 4,912,977 1.583E+07 2,127 1,118 83 2010 0 5,415,630 0 4,912,977 1.583E+07 2,127 1,118 83 2011 0 5,415,630 0 4,912,977 1.582E+07 1,924 1,011 75 2012 0 5,415,630 0 4,912,977 1.362E+07 1,831 962 71 2013 0 5,415,630 0 4,912,977 1.296E+07 1,741 915 68 2014 0 5,415,630 0 4,912,977 1.296E+07 1,741 915 68 2015 0 5,415,630 0 4,912,977 1.296E+07 1,741 915 68 2016 0 5,415,630 0 4,912,977 1.296E+07 1,741 915 68 2017 0 5,415,630 0 4,912,977 1.296E+07 1,741 915 68 2018 0 5,415,630 0 4,912,977 1.296E+07 1,740 749					 					118
1998										122
1999			<u> </u>	· · · · · · · · · · · · · · · · · · ·	 					127
2000 0 5,415,630 0 4,912,977 2.482E+07 3,336 1,753 130 2001 0 5,415,630 0 4,912,977 2.361E+07 3,173 1,668 124 2002 0 5,415,630 0 4,912,977 2.246E+07 3,018 1,586 118 2003 0 5,415,630 0 4,912,977 2.136E+07 2,871 1,509 112 2004 0 5,415,630 0 4,912,977 2.032E+07 2,731 1,435 107 2005 0 5,415,630 0 4,912,977 1.933E+07 2,598 1,365 101 2006 0 5,415,630 0 4,912,977 1.839E+07 2,471 1,299 96 2007 0 5,415,630 0 4,912,977 1.749E+07 2,350 1,235 92 2008 0 5,415,630 0 4,912,977 1.583E+07 2,127 1,118 83			-,,	_						131
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					 			-,		124
2002 0 5,415,630 0 4,912,977 2.246E+07 3,018 1,586 118 2003 0 5,415,630 0 4,912,977 2.136E+07 2,871 1,509 112 2004 0 5,415,630 0 4,912,977 2.032E+07 2,731 1,435 107 2005 0 5,415,630 0 4,912,977 1.933E+07 2,598 1,365 101 2006 0 5,415,630 0 4,912,977 1.839E+07 2,471 1,299 96 2007 0 5,415,630 0 4,912,977 1.749E+07 2,350 1,235 92 2008 0 5,415,630 0 4,912,977 1.668E+07 2,236 1,175 87 2009 0 5,415,630 0 4,912,977 1.50E+07 2,127 1,118 83 2010 0 5,415,630 0 4,912,977 1.50E+07 2,023 1,063 79		-								118
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					· / / / / / / / / / / / / / / / / / / /					112
2004 0 5,415,630 0 4,912,977 2.032E+07 2,731 1,435 107 2005 0 5,415,630 0 4,912,977 1.933E+07 2,598 1,365 101 2006 0 5,415,630 0 4,912,977 1.839E+07 2,471 1,299 96 2007 0 5,415,630 0 4,912,977 1.749E+07 2,350 1,235 92 2008 0 5,415,630 0 4,912,977 1.664E+07 2,236 1,175 87 2009 0 5,415,630 0 4,912,977 1.583E+07 2,127 1,118 83 2010 0 5,415,630 0 4,912,977 1.506E+07 2,023 1,063 79 2011 0 5,415,630 0 4,912,977 1.432E+07 1,924 1,011 75 2012 0 5,415,630 0 4,912,977 1.362E+07 1,831 962 71					 					107
2005 0 5,415,630 0 4,912,977 1.933E+07 2,598 1,365 101 2006 0 5,415,630 0 4,912,977 1.839E+07 2,471 1,299 96 2007 0 5,415,630 0 4,912,977 1.749E+07 2,350 1,235 92 2008 0 5,415,630 0 4,912,977 1.664E+07 2,236 1,175 87 2009 0 5,415,630 0 4,912,977 1.583E+07 2,127 1,118 83 2010 0 5,415,630 0 4,912,977 1.506E+07 2,023 1,063 79 2011 0 5,415,630 0 4,912,977 1.432E+07 1,924 1,011 75 2012 0 5,415,630 0 4,912,977 1.362E+07 1,831 962 71 2013 0 5,415,630 0 4,912,977 1.296E+07 1,741 915 68					- 			 		102
2006 0 5,415,630 0 4,912,977 1.839E+07 2,471 1,299 96 2007 0 5,415,630 0 4,912,977 1.749E+07 2,350 1,235 92 2008 0 5,415,630 0 4,912,977 1.664E+07 2,236 1,175 87 2009 0 5,415,630 0 4,912,977 1.583E+07 2,127 1,118 83 2010 0 5,415,630 0 4,912,977 1.506E+07 2,023 1,063 79 2011 0 5,415,630 0 4,912,977 1.432E+07 1,924 1,011 75 2012 0 5,415,630 0 4,912,977 1.362E+07 1,831 962 71 2013 0 5,415,630 0 4,912,977 1.296E+07 1,741 915 68 2014 0 5,415,630 0 4,912,977 1.233E+07 1,656 871 65					4					97
2007 0 5,415,630 0 4,912,977 1.749E+07 2,350 1,235 92 2008 0 5,415,630 0 4,912,977 1.664E+07 2,236 1,175 87 2009 0 5,415,630 0 4,912,977 1.583E+07 2,127 1,118 83 2010 0 5,415,630 0 4,912,977 1.506E+07 2,023 1,063 79 2011 0 5,415,630 0 4,912,977 1.432E+07 1,924 1,011 75 2012 0 5,415,630 0 4,912,977 1.362E+07 1,831 962 71 2013 0 5,415,630 0 4,912,977 1.296E+07 1,741 915 68 2014 0 5,415,630 0 4,912,977 1.233E+07 1,656 871 65 2015 0 5,415,630 0 4,912,977 1.172E+07 1,576 828 61 <								 		92
2008 0 5,415,630 0 4,912,977 1.664E+07 2,236 1,175 87 2009 0 5,415,630 0 4,912,977 1.583E+07 2,127 1,118 83 2010 0 5,415,630 0 4,912,977 1.506E+07 2,023 1,063 79 2011 0 5,415,630 0 4,912,977 1.432E+07 1,924 1,011 75 2012 0 5,415,630 0 4,912,977 1.362E+07 1,831 962 71 2013 0 5,415,630 0 4,912,977 1.296E+07 1,741 915 68 2014 0 5,415,630 0 4,912,977 1.233E+07 1,656 871 65 2015 0 5,415,630 0 4,912,977 1.172E+07 1,576 828 61 2016 0 5,415,630 0 4,912,977 1.115E+07 1,499 788 58 <td< td=""><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td>87</td></td<>				_						87
2009 0 5,415,630 0 4,912,977 1.583E+07 2,127 1,118 83 2010 0 5,415,630 0 4,912,977 1.506E+07 2,023 1,063 79 2011 0 5,415,630 0 4,912,977 1.432E+07 1,924 1,011 75 2012 0 5,415,630 0 4,912,977 1.362E+07 1,831 962 71 2013 0 5,415,630 0 4,912,977 1.296E+07 1,741 915 68 2014 0 5,415,630 0 4,912,977 1.233E+07 1,656 871 65 2015 0 5,415,630 0 4,912,977 1.172E+07 1,576 828 61 2016 0 5,415,630 0 4,912,977 1.115E+07 1,499 788 58 2017 0 5,415,630 0 4,912,977 1.061E+07 1,426 749 56 2										83
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								 		79
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					/- /					75
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								/		72
2013 0 5,415,630 0 4,912,977 1.296E+07 1,741 915 68 2014 0 5,415,630 0 4,912,977 1.233E+07 1,656 871 65 2015 0 5,415,630 0 4,912,977 1.172E+07 1,576 828 61 2016 0 5,415,630 0 4,912,977 1.115E+07 1,499 788 58 2017 0 5,415,630 0 4,912,977 1.061E+07 1,426 749 56 2018 0 5,415,630 0 4,912,977 1.009E+07 1,356 713 53 2019 0 5,415,630 0 4,912,977 9.600E+06 1,290 678 50 2020 0 5,415,630 0 4,912,977 9.131E+06 1,227 645 48										68
2014 0 5,415,630 0 4,912,977 1.233E+07 1,656 871 65 2015 0 5,415,630 0 4,912,977 1.172E+07 1,576 828 61 2016 0 5,415,630 0 4,912,977 1.115E+07 1,499 788 58 2017 0 5,415,630 0 4,912,977 1.061E+07 1,426 749 56 2018 0 5,415,630 0 4,912,977 1.009E+07 1,356 713 53 2019 0 5,415,630 0 4,912,977 9.600E+06 1,290 678 50 2020 0 5,415,630 0 4,912,977 9.131E+06 1,227 645 48					- / / 					65
2015 0 5,415,630 0 4,912,977 1.172E+07 1,576 828 61 2016 0 5,415,630 0 4,912,977 1.115E+07 1,499 788 58 2017 0 5,415,630 0 4,912,977 1.061E+07 1,426 749 56 2018 0 5,415,630 0 4,912,977 1.009E+07 1,356 713 53 2019 0 5,415,630 0 4,912,977 9.600E+06 1,290 678 50 2020 0 5,415,630 0 4,912,977 9.131E+06 1,227 645 48		_			 					62 59
2016 0 5,415,630 0 4,912,977 1.115E+07 1,499 788 58 2017 0 5,415,630 0 4,912,977 1.061E+07 1,426 749 56 2018 0 5,415,630 0 4,912,977 1.009E+07 1,356 713 53 2019 0 5,415,630 0 4,912,977 9.600E+06 1,290 678 50 2020 0 5,415,630 0 4,912,977 9.131E+06 1,227 645 48					 '. '. '. 					
2017 0 5,415,630 0 4,912,977 1.061E+07 1,426 749 56 2018 0 5,415,630 0 4,912,977 1.009E+07 1,356 713 53 2019 0 5,415,630 0 4,912,977 9.600E+06 1,290 678 50 2020 0 5,415,630 0 4,912,977 9.131E+06 1,227 645 48		_			 					56 53
2018 0 5,415,630 0 4,912,977 1.009E+07 1,356 713 53 2019 0 5,415,630 0 4,912,977 9.600E+06 1,290 678 50 2020 0 5,415,630 0 4,912,977 9.131E+06 1,227 645 48				·····						50
2019 0 5,415,630 0 4,912,977 9.600E+06 1,290 678 50 2020 0 5,415,630 0 4,912,977 9.131E+06 1,227 645 48										48
2020 0 5,415,630 0 4,912,977 9.131E+06 1,227 645 48										46
										43
2021 0 5,415,630 0 4,912,977 8.686E+06 1,167 613 46							 			41
2021 0 3,413,030 0 4,912,977 8.086E+06 1,107 613 46 2022 0 5,415,630 0 4,912,977 8.262E+06 1,110 584 43						$\overline{}$				39

ESTIMATED NMOC CONCENTRATION IN LFG: ASSUMED METHANE CONTENT OF LFG:

SELECTED DECAY RATE CONSTANT:

SELECTED ULTIMATE METHANE RECOVERY RATE

METRIC EQUIVALENT:

675 ppmv

50%

0.05

5,446 ft3/ton

170 cu m/Mg

TABLE 2. PROJECTED LFG AND NMOC GENERATION RATES (1,307 ppm) Phase III, Cell 1 White Street Landfill - Greensboro, North Carolina

Year	Disposal <u>Rate</u> (tons/yr)	Refuse <u>In-Place</u> (tons)	Disposal Rate (Mg/yr)	Refuse <u>In-Place</u> (Mg)	<u>Rates</u> (m³/yr) 0.000E+00	(cfm)	LFG Generation Rates (cfm) (Million ft³/yr)		NMOC Generation <u>Rates</u> (Mg/yr)
1997	8,608	0	7,809	0		0	0	0	0
1998	255,306	8,608	231,610	7,809	6.638E+04	9	5	1	1
1999	262,512	263,914	238,147	239,419	2.032E+06	273	144	21	19
2000	271,562	526,426	246,357	477,566	3.957E+06	532	279	40	36
2001	136,534	797,988	123,862	723,923	5.858E+06	787	414	59	54
2002	0	934,522	0	847,784	6.625E+06	890	468	67	61
2003	0	934,522	0	847,784	6.302E+06	847	445	64	58
2004	0	934,522	0	847,784	5.995E+06	806	423	61	55
2005	0	934,522	0	847,784	5.702E+06	766	403	58	53
2006	≂0	934,522	0	847,784	5.424E+06	729	383	55	50
2007	0	934,522	0	847,784	5.160E+06	693	364	52	48
2008	0	934,522	0	847,784	4.908E+06	660	347	50	45
2009	0	934,522	0	847,784	4.669E+06	627	330	47	43
2010	0	934,522	0	847,784	4.441E+06	597	314	45	41
2011	0	934,522	0	847,784	4.224E+06	568	298	43	39
2012	0	934,522	0	847,784	4.018E+06	540	284	41	37
2013	0	934,522	0	847,784	3.822E+06	514	270	39	35
2014	0	934,522	0	847,784	3.636E+06	489	257	37	33
2015	0	934,522	0	847,784	3.459E+06	465	244	35	32
2016	0	934,522	0	847,784	3.290E+06	442	232	33	30
2017	- 0	934,522	0	847,784	3.130E+06	421	221	32	29
2018	0	934,522	0	847,784	2.977E+06	400	210	30	27
2019	0	934,522	0	847,784	2.832E+06	381	200	29	26
2020	0	934,522	0	847,784	2.694E+06	362	190	27	25
2021	00	934,522	0	847,784	2.562E+06	344	181	26	24
2022	0	934,522	0	847,784	2.437E+06	328	172	25	22
2023	00	934,522	0	847,784	2.318E+06	312	164	24	21
2024	0	934,522	0	847,784	2.205E+06	296	156	22	20
2025	0	934,522	0	847,784	2.098E+06	282	148	21	19
2026	0	934,522	0	847,784	1.995E+06	268	141	20	18
2027	0	934,522	0	847,784	1.898E+06	255	134	19	17
2028	0	934,522	. 0	847,784	1.806E+06	243	128	18	17
2029	0	934,522	0	847,784	1.718E+06	231	121	17	16
2030	0	934,522	0	847,784	1.634E+06	220	115	17	15
2031	0	934,522	0	847,784	1.554E+06	209	110	16	14
2032	0	934,522	0	847,784	1.478E+06	199	104	15	14
2033	0	934,522	0	847,784	1.406E+06	189	99	14	13
2034	0 _	934,522	0	847,784	1.338E+06	180	94	14	12
2035	0	934,522	0	847,784	1.272E+06	171	90	13	12
2036	0	934,522	0	847,784	1.210E+06	163	85	12	_11
2037	0	934,522	0	847,784	1.151E+06	155	81	12	11
2038	0	934,522	0	847,784	1.095E+06	147	77	11	10
2039	0	934,522	0	847,784	1.042E+06	140	74	11	10
2040	0	934,522	0	847,784	9.909E+05	133	70	10	9
2041	0	934,522	0	847,784	9.426E+05	127	67	10	9

ESTIMATED NMOC CONCENTRATION IN LFG: ASSUMED METHANE CONTENT OF LFG: SELECTED DECAY RATE CONSTANT:

SELECTED ULTIMATE METHANE RECOVERY RATE

METRIC EQUIVALENT:

1307 ppmv 50% 0.05

5,446 ft3/ton 170 cu m/Mg

TABLE 3. PROJECTED LFG AND NMOC GENERATION RATES (640 ppm)
Phase III, Cell 2 White Street Landfill - Greensboro, North Carolina

Year	Disposal <u>Rate</u> (tons/yr)	Refuse In-Place (tons)	Disposal Rate (Mg/yr)	Refuse In-Place (Mg)	Methane Generation <u>Rates</u> (m³/yr)	LFG Generation Rates (cfm) (Million ft ³ /yr)		NMOC Generation Rates (tons/yr)	NMOC Generation <u>Rates</u> (Mg/yr)
2001	130,102	0	118,027	0	0.000E+00	0	0	0	
2001	260,109	130,102	235,967	118,027	1.003E+06	135	71	5	5
2002	195,595	390,211	177,441	353,993	2.960E+06	398	209	15	
2003	128,336	585,806	116,424	531,434	4.324E+06	581	305	22	13
2005	134,753	714,142	122,246	647,859	5.103E+06	686	360	25	20
2005	141,490	848,895	128,358	770.105	5.893E+06	792	416	29	23
2007	141,490	990,385	134,776	898,462	6.697E+06	900	473	33	30
2007	155,993	1,138,950	141,514	1,033,238	7.516E+06	1,010	531	37	34
2009			148,591		8.352E+06		590		
2010	163,793 0	1,294,943 1,458,736	0	1,174,753	9.208E+06	1,122 1,237	650	42 46	38
2010	0		0	1,323,343					42
2011	0	1,458,736 1,458,736	0	1,323,343 1,323,343	8.759E+06 8.331E+06	1,177 1,120	619	44	40
2012	0	1,458,736	0	1,323,343	7.925E+06	1,120	588 560	39	38
2013	0	}	0	+ 	7.539E+06	,			36
2014	0	1,458,736	0	1,323,343		1,013	532	37	34
2016	0	1,458,736	0	1,323,343	7.171E+06 6.821E+06	964 917	506	36	32
2017	0	1,458,736	0	1,323,343	6.488E+06	872	482 458	34	31
2017	0	1,458,736	0	1,323,343		872			29
2019	0	1,458,736	0	1,323,343	6.172E+06 5.871E+06	789	436 415	31	28
2019	0	1,458,736	0			750	394	29	26
2020	0	1,458,736	0	1,323,343	5.585E+06 5.312E+06	714	375	28	25
2021	0	1,458,736	0	1,323,343	5.053E+06	679	357	26	24
2022	0	1,458,736 1,458,736	0	1,323,343	4.807E+06	646	339	25 24	23
2023	0	1,458,736	0		4.572E+06	614	323		
2024	0	1,458,736	0	1,323,343	4.349E+06		307	23	21
2025	0		0	1,323,343	4.349E+06 4.137E+06	584 556	292	22	20
2026	0	1,458,736 1,458,736	0	1,323,343	3.935E+06	529	278	21	19
2027	0		0	• • • • • • • • • • • • • • • • • • • 	3.744E+06	503	264		18
2028	0	1,458,736	0	1,323,343	3.561E+06	479	252	19 18	17
2029	0	1,458,736 1,458,736	0	1,323,343	3.387E+06	455	239	17	16
2030	0	1,458,736	0	1,323,343	3.387E+06 3.222E+06	433	239	16	15
2031	0	1,458,736	0	1,323,343	3.065E+06	433	216	15	15
	0		0	,,,,,,,					14
2033	0	1,458,736 1,458,736	0	1,323,343	2.915E+06 2.773E+06	392 373	206	14 14	13 13
2034	0	1,458,736	0	1,323,343	2.638E+06	373	186	13	13
2035	0	1,458,736	0	1,323,343	2.509E+06	337	177	13	12
2036	0	1,458,736	0	1,323,343	2.387E+06	337	169		
	0		0	 				12	11
2038	0	1,458,736	0	1,323,343	2.271E+06	305 290	160	11	10
2039	0	1,458,736 1,458,736	0	1,323,343	2.160E+06 2.054E+06	290	153 145	11 10	10
2040	0	1,458,736	0	1,323,343		263			9
	0		0	1,323,343	1.954E+06		138	10	9
2042		1,458,736		1,323,343	1.859E+06	250	131	9	8
2043	0	1,458,736	0	1,323,343	1.768E+06	238	125	9	8
2044	0	1,458,736	0	1,323,343	1.682E+06	226	119	8	8 7
2043	U	1,458,736	U	1,323,343	1.600E+06	215	113	8	

ESTIMATED NMOC CONCENTRATION IN LFG:
ASSUMED METHANE CONTENT OF LFG:
SELECTED DECAY RATE CONSTANT:
SELECTED ULTIMATE METHANE RECOVERY RATE
METRIC EQUIVALENT:

640 ppmv 50% 0.05 5,446 ft3/ton 170 cu m/Mg